

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

VISION:

To be premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION:

- M1:** To achieve academic excellence through innovative teaching and learning process.
- M2:** To imbibe the research culture for addressing industry and societal needs.
- M3:** To inculcate social attitude through community engagement initiatives.
- M4:** To provide conducive environment for building the entrepreneurial skills.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- PEO1:** Graduates will be able to apply their technical skill sets and knowledge to solve engineering based problems in industry, academic and diverse fields of Electrical Engineering.
- PEO2:** Graduates will demonstrate ethical and social responsibility while engaging in research, innovative practices and entrepreneurial activities, contributing positively to society and technological advancement.
- PEO3:** Graduates will embrace lifelong learning and adaptability, staying updated with emerging technologies, industry trends and advancements in electrical engineering.

PROGRAM OUTCOMES (POs):

- PO1:** An ability to independently carry out research /investigation and development work to solve practical problems.
- PO2:** An ability to write and present a substantial technical report/document.
- PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

PROGRAM SPECIFIC OUTCOMES (PSOs):

- PSO1:** To apply knowledge to build ability to design, analyses and solve problems in the field of electrical engineering through power systems, electrical machines, control systems, electronics and automation.
- PSO2:** To develop solution to real time problems through appropriate techniques, modern engineering hardware and software tools related Electrical engineering.

DEPARTMENT OF ELECTRICAL ENGINEERING

LIST OF ABBREVIATIONS

Abbreviation	Description
PCC	Programme Core Course
PEC	Programme Elective Course
MDM	Multidisciplinary Minor
OE	Open Elective - Other than a particular program
VSEC	Vocational and Skill Enhancement Course
MC	Management Courses
DIS	Dissertation Phase
MOOC	Massive Open Online Course -I
M. Tech.	Master of Technology
L	Lecture
P	Practical
T	Tutorial
H	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Examination
TH	Theory
TW	Term Work
OR	Oral
PR	Practical

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Second Year M.Tech - Power System: Semester - III

Course Code	Course Type	Course Name	Teaching Scheme (hrs./Week)						Evaluation Scheme (Marks)					
			L	P	H	CR			CIE	ETE	TW	PR	OR	Total
						TH	PR	Total						
EEPS301	OEC	Open Elective – III [#]	4	-	4	4	-	4	50	50	-	-	-	100
EEPS302	MOOC	Massive Open Online Course – I	4	-	4	4	-	4	-	-	100	-	-	100
EEPS303	DIS	Dissertation Phase – II	-	20	20	10	-	10	-	-	50	-	50	100
EEPS304	MC	Project Management & IPR	2		2	-	2	2	-	-	50	-	-	50
Total			10	20	30	18	2	20	50	50	200	-	50	350

Open Elective – III: Choose any one from the following:

Course Code	Course Type	Open Elective – III	Offered by Department
MEDS301	OEC	Advanced Computer Vision & Image Processing	Computer
EEPS301		Energy Management & Auditing	Electrical
ETIS301		Renewable Energy Studies	E&TC
MEDE301		Design thinking, Innovation and Entrepreneurship	Mechanical

BoS Chairman

Director

ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Second Year M.Tech - Power System: Semester - IV

Course Code	Course Type	Course Name	Teaching Scheme (hrs./Week)						Evaluation Scheme (Marks)					
			L	P	H	CR			CIE	ETE	TW	PR	OR	Total
						TH	PR	Total						
EEPS401	DIS	Dissertation Phase – III	-	32	32	-	16	16	-	-	150	-	100	250
EEPS402	MOOC	Massive Open Online Course – II	4	-	4	4	-	4	-	-	100	-	-	100
Total			4	32	36	4	16	20	-	-	250	-	100	350

BoS Chairman

Director

ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

**Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41**

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

INDEX

Sr. No.	Course Code	Course Name	Page No.
Second Year M. Tech. : Semester - I			
1	EEPS301	Open Elective – III [#]	7
2	EEPS302	Massive Open Online Course – I	16
3	EEPS303	Dissertation Phase – II	18
4	EEPS304	Project Management & IPR	22
Second Year M. Tech. : Semester – II			
5	EEPS401	Dissertation Phase – III	25
6	EEPS402	Massive Open Online Course – II	30

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

SYLLABUS
SEMESTER - III

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Computer – Data Science)								Semester: III	
Course: Open Elective – III (Advanced Computer Vision & Image Processing)								Code: CODS301	
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	50	50	-	-	-	100

Prerequisites:

OpenCV (Python/C++), MATLAB, and image analysis libraries, Scikit-image, NumPy, and PyWavelets.

Course Objectives:

1. To introduce the fundamental principles of image formation, camera models, and essential techniques used in computer vision and image processing.
2. To explain advanced methods for image enhancement, restoration, feature extraction, and representation required for complex vision tasks.
3. To explore segmentation techniques, object representation methods, motion analysis, and algorithmic approaches for understanding visual scenes.
4. To develop a thorough understanding of 3D vision concepts, including stereo imaging, depth estimation, and reconstruction techniques used in real-world applications.
5. To provide knowledge of deep learning architectures and modern AI frameworks for image classification, object detection, and image segmentation.
6. To introduce generative models, emerging trends, ethical considerations, and practical applications of computer vision in industry.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Understand advanced image formation, camera models, and preprocessing techniques for computer vision.
CO2	Apply enhancement, restoration, and feature extraction methods to analyze and improve images.
CO3	Implement advanced segmentation, representation, and motion analysis algorithms in vision tasks.
CO4	Develop 3D vision solutions using stereo vision, depth estimation, and reconstruction techniques.
CO5	Build and evaluate deep learning models for image classification, detection, and segmentation.
CO6	Apply generative models, emerging AI techniques, and ethical principles in modern computer vision applications.

Course Contents:

Unit	Description
1.	<p>Fundamentals of Computer Vision & Advanced Image Formation: Image formation models, radiometry, reflectance, advanced camera models (pinhole, fisheye, omnidirectional), geometric transformations, color spaces, sampling, quantization, image interpolation, HDR imaging, multi-view geometry basics, and camera calibration techniques (intrinsic & extrinsic parameters).</p>

DEPARTMENT OF ELECTRICAL ENGINEERING

	Image Enhancement, Restoration & Feature Engineering: Spatial and frequency domain enhancement, wavelet transforms, noise modelling, advanced denoising (Non-local Means, BM3D), deblurring, blind deconvolution, super-resolution, filtering, edge detection, segmentation basics, and feature extraction methods (Harris, SIFT, SURF, ORB, HOG, LBP, GLCM).
2.	Advanced Segmentation, Object Representation & Vision Algorithms: Graph-based segmentation (Normalized Cuts, GrabCut), active contours (Snakes), level-set methods, watershed, morphological processing, contour detection, shape descriptors, texture analysis, region descriptors, optical flow (dense & sparse), object tracking (Kalman filter, Particle filter, Meanshift, CAMShift), and motion analysis. Applications include medical imaging, surveillance, and robotics.
3.	3D Computer Vision, Depth, Motion & Reconstruction: Stereo vision, disparity maps, epipolar geometry, essential/fundamental matrices, triangulation, projective geometry, Structure-from-Motion (SfM), Visual Odometry, SLAM (MonoSLAM, ORB-SLAM), depth sensing technologies (LiDAR, ToF cameras), point cloud processing, and 3D reconstruction
4.	Deep Learning for Computer Vision & AI Models: CNN architectures (LeNet, VGG, ResNet, DenseNet, MobileNet, EfficientNet), object detection (Faster R-CNN, YOLO, SSD), segmentation (FCN, U-Net, DeepLab), instance segmentation (Mask R-CNN), Vision Transformers (ViT, Swin Transformer), multimodal models (CLIP), data augmentation, transfer learning, model optimisation,
5.	Generative Models, Ethics, Applications & Emerging Trends: GANs (DCGAN, CycleGAN, StyleGAN), diffusion models, image-to-image translation, 3D generative models, deepfake detection, self-supervised learning (SimCLR, MoCo), reinforcement learning for vision, real-time edge vision, Vision–Language models, digital twins, and ethical considerations (privacy, surveillance risks, bias, fairness).

Text Books:

1. Szeliski Richard, “Computer Vision: Algorithms and Applications”, Springer, 2022 (Latest Edition)
2. Gonzalez Rafael C., & Woods Richard E., “Digital Image Processing”, Pearson, 2018

Reference Books:

1. Forsyth David, & Ponce Jean – “Computer Vision: A Modern Approach”, Pearson, 2011.
2. Goodfellow Ian, Bengio Yoshua, & Courville Aaron – “Deep Learning”, MIT Press, 2016.
3. Hartley Richard, & Zisserman Andrew – “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003.
4. Bradski Gary, & Kaehler Adrian – “Learning OpenCV”, O'Reilly Media, 2008.
5. Prince Simon – “Computer Vision: Models, Learning, and Inference”, Cambridge University Press, 2012.
6. Krizhevsky Alex, & Sutskever Ilya – “Neural Networks for Vision”, Various Academic Sources.
7. Stanford CS231N – “Convolutional Neural Networks for Visual Recognition”, Stanford University (Course Notes & Research Papers).

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)								Semester: III	
Course: Open Elective – III (Energy Management & Auditing)								Code: EEPS301	
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	50	50	-	-	-	100

Prerequisites:

Energy Scenario, Engineering Measurements and Instrumentation, Computer Skills

Course Objectives:

1. To provide students with a strong foundation in energy principles, including types of energy, energy conversion and energy flow in systems.
2. To introduce the core concepts and strategies of energy management, including planning, monitoring and optimization of energy usage in various sectors.
3. To train students to analyze energy data and prepare professional energy audit reports with recommendations and cost-benefit analysis.
4. To equip students with the skills and methodologies required to conduct energy audits in industrial, commercial and residential settings.

Course Outcomes: After completion of this course, students will be able to -

CO1	Identify and describe present state of energy security and its importance.
CO2	Identify and describe the basic principles and methodologies adopted in energy audit of utility.
CO3	Describe the energy performance evaluation of some common electrical and thermal installations and identify the energy-saving opportunities.
CO4	Analyze the data collected during the performance evaluation and recommend energy saving measures.
CO5	Analyze energy consumption patterns and identify saving opportunities.
CO6	Explain the principles of energy management and energy conservation.

Course Contents:

Unit	Description
1.	<p>Basic Principles of Energy Audit: Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes, Energy audit of industries, energy saving potential, energy audit of process industry, thermal power station, building energy audit. Need for energy management, energy basics, designing and starting an energy management program, energy audit process, energy accounting, energy monitoring, targeting and reporting.</p>
2.	<p>Energy Cost and Load Management: Important concepts in an economic analysis, economic models, time value of money, utility rate structures, cost of electricity, loss evaluation. Load management: demand control techniques, utility monitoring and control system, HVAC and energy management, economic justification.</p>

DEPARTMENT OF ELECTRICAL ENGINEERING

3.	Energy Efficient Motors: Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics, variable speed, variable duty cycle systems, RMS hp, voltage variation, voltage unbalance, over motoring, motor energy audit applications to Systems and equipment such as: electric motors, transformers and reactors, capacitors and synchronous machines.
4.	Metering for Energy Management: Relationships between parameters, Units of measure, typical cost factors, utility meters, timing of meter disc for kilowatt measurement, demand meters, paralleling of current transformers, instrument transformer burdens, multitasking solid-state meters, metering location vs. requirements, metering techniques and practical examples.
5.	Lighting Systems and Cogeneration: Concept of lighting systems, the task and the working space, light sources, ballasts, luminaries, lighting controls, optimizing lighting energy, power factor and effect of harmonics on power quality, cost analysis techniques, lighting and energy standards. Cogeneration: forms of cogeneration, feasibility of cogeneration, electrical interconnection.
6.	Economic Aspects and Analysis: Economic Analysis, Depreciation Methods, time value of money, rate of return, present worth method, replacement analysis, life cycle costing analysis, Energy efficient motors, calculation of simple payback method, net present worth method, Power factor correction, lighting, Applications of life cycle costing analysis, return on investment.

Text Books:

1. Eastop T.D and Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, 1990.
2. Reay D.A., "Industrial Energy Conservation", first edition, Pergamon Press, 1977.
3. Energy Audit and Management, Volume-I, IECC Press.
4. W.R. Murphy, G. McKay Butter worth; Energy management, Elsevier/bsp Books Pvt. Ltd., 2003.
5. Gupta B. R.: Generation of Electrical Energy, Eurasia Publishing House Pvt. Ltd., New Delhi, 2001
6. Prasanna Chandra, "Financial management", Tata McGraw Hill, 10th Edition, 2019.

Reference Books:

1. IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities, IEEE, 1996.
2. Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.
3. Barney L. Capehart, Wayne C. Turner and William J. Kennedy, "Guide to Energy Management", Fifth Edition, The Fairmont Press, Inc., 2006.
4. Albert Thumann, P.E., C.E.M. William J. Younger, "Handbook of Energy Audits", River Publishers.
5. Paul O'Callaghan, "Energy management", McGraw-Hill Education, 1992.
6. CB Smith, "Energy Management Principles", Pergamon Press, New York.
7. W. C. Turner, "Energy Management Hand Book", John Wiley and sons.

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (E&TC – IoT and Sensor Systems)					Semester: III				
Course: Open Elective – III (Advance Sensor Technology & Instrumentation)					Code: ETIS301				
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	50	50	-	-	-	100

Prerequisites:

Familiarity with concepts such as energy, power, voltage, current, and basic circuit theory, Awareness of environmental issues and the need for sustainable development is beneficial.

Course Objectives:

1. To provide students with a comprehensive understanding of various renewable energy technologies including solar, wind, biomass, hydro, and emerging systems like fuel cells and ocean energy.
2. To equip students with the knowledge to analyze, design, and evaluate renewable energy systems in the context of global and Indian energy needs.

Course Outcomes: After completion of this course, students will be able to -

CO1	Explain the need, potential, and classification of renewable energy sources, along with their environmental and economic impact.
CO2	Analyze photovoltaic system components and performance characteristics for both grid-connected and off-grid solar applications.
CO3	Evaluate the performance of wind energy systems based on wind speed, turbine type, and system configuration.
CO4	Classify biomass resources and explain the technologies used for conversion into usable energy forms.
CO5	Assess the working principles and feasibility of small hydro, tidal, and wave energy systems for power generation.
CO6	Compare emerging technologies such as geothermal, ocean thermal, and fuel cells based on operating principles and energy output.

Course Contents:

Unit	Description
1.	<p>Introduction to Renewable Energy Systems: Overview of global and Indian energy scenario, Need and significance of renewable energy, Classification and comparison of renewable energy sources, Environmental impact and sustainability, Government policies and incentives for renewable energy, Introduction to hybrid systems and energy storage.</p>
2.	<p>Photovoltaic (Solar) Energy Systems: Introduction to photovoltaic systems, Major types of PV systems: Standalone and Grid-connected, Current–voltage (I–V) curves for loads, Peak sun hours and estimation of PV performance, DC and AC rated power, Capacity factor and efficiency, PV-powered water pumping and applications in rural India, Scope and advantages of off-grid PV systems for inclusive growth, Introduction to solar inverters, MPPT, and system sizing</p>

DEPARTMENT OF ELECTRICAL ENGINEERING

3.	Wind Energy Conversion Systems: Wind resource assessment: wind speed, wind power density, Wind power extraction principles and Betz limit, Wind turbine types: horizontal and vertical axis, Components of wind energy systems, Tower height and wind speed relationship, Variable speed operation and maximum power tracking, Safety, maintenance, and grid integration of wind farms.
4.	Biomass and Waste-to-Energy Technologies: Biomass resources: agricultural, forestry, and animal waste, Energy content and types of biomass fuels, Biomass conversion technologies: combustion, gasification, pyrolysis, Biomass-fired boilers and co-firing with coal, Municipal solid waste to energy: technology and challenges, Biogas plants and their role in rural electrification, Case studies of community-level biomass systems
5.	Small Hydro, Tidal, and Wave Energy: Introduction to mini and micro hydel schemes, Components and layout of small hydro power plants, Economics and feasibility of small hydro plants, Tidal energy: principles, potential and technology, Wave energy: energy extraction and device types, Environmental and ecological impact of hydro and marine systems
6.	Emerging Technologies: Geothermal, OTEC & Fuel Cells: Geothermal energy: sources, extraction technologies, and viability, Ocean Thermal Energy Conversion (OTEC): principles and systems, Introduction to fuel cells, Types of fuel cells (PEMFC, SOFC, etc.), Operating characteristics, efficiency, and energy output, Future trends in renewable energy: Hydrogen energy, hybrid RE systems, smart grids.

Text Books:

1. D.P. Kothari, K.C. Singal & Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies", PHI Learning, 2nd or 3rd Edition.
2. G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, Latest Edition.
3. V.V.N. Kishore, "Renewable Energy Engineering and Technology – A Knowledge Compendium", The Energy and Resources Institute (TERI Press).

Reference Books:

1. R. Ramesh, "Renewable Energy Technologies", Narosa Publishing House.
2. S. Rao & Parulkar, "Energy Technology", Khanna Publishers.
3. Mittal, "Non-Conventional Energy Systems", Wheeler Publishing.

Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Mechanical – Design Engineering)								Semester: III	
Course: Open Elective – III (Design thinking, Innovation and Entrepreneurship)								Code: MEDE301	
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	50	50	-	-	-	100

Prerequisites:

Course is expected to have a basic understanding of engineering design principles, analytical problem-solving skills, and effective communication abilities. Prior exposure to design projects or interdisciplinary teamwork is desirable. An open mindset, willingness to collaborate, and readiness to engage with user-centric and creative approaches are essential for making the most of this experiential and innovation-driven course.

Course Objectives:

1. To introduce students to the principles and process of design thinking
2. To develop an understanding of innovation frameworks and tools
3. To build foundational knowledge in entrepreneurship
4. To empower students to translate ideas into actionable business models

Course Outcomes: At the end of the course, the student will be able to -

CO1	Understand the fundamentals of design thinking.
CO2	Apply empathy and define user-centric problems.
CO3	Analyze various types of innovation and their strategic role in modern businesses and start-ups.
CO4	Analyze types and roles of innovation in business.
CO5	Explain core concepts and types of entrepreneurship.
CO6	Evaluate the entrepreneurial ecosystem and support systems.

Course Contents:

Unit	Description
1.	<p>Fundamentals of Design Thinking: Definition and Origin of Design Thinking, Design Thinking vs. Traditional Design, Importance and Relevance of Design Thinking, Types of Thinking Processes, Common Methods to Influence Human Thinking, Problem Solving and the Need for Design Thinking, Design Thinking Process Models and Tools.</p>
2.	<p>Empathize and Define: Phases of Design Thinking, How to Empathize: Role and Purpose, Empathy Mapping: Tools and Techniques, Personas Development,</p> <p>Integrated Design Research: Reviewing Literature, Identifying Literature, Summarizing Literature; Determining Research Focus, Identifying and Defining Factors and Links of Interest, Formulating Research Questions and Hypotheses, Techniques for Refining Research Questions and Hypotheses, Developing Research Plan.</p>

DEPARTMENT OF ELECTRICAL ENGINEERING

3.	Understanding Innovation in the Business: Definition and types of innovation (Product, Process, Business Model, Service), Technological innovation vs. non-technological innovation, Innovation megatrends impacting global industries, Characteristics and needs of innovation in entrepreneurship, Innovation in start-ups vs. traditional businesses.
4.	Innovation Tools and Methods: Ideation techniques (SCAMPER, Brainstorming, Mind Mapping), Innovation Process Models (Design Thinking, Lean Startup), Open innovation and co-creation, Innovation funnel and stage-gate processes, Measuring innovation performance and impact.
5.	Fundamentals of Entrepreneurship: Definition and objectives of entrepreneurship, Types of entrepreneurs: Intrapreneurs, Social entrepreneurs, Technopreneurs, Entrepreneurial mindset and risk-taking, Role of entrepreneurship in economic development.
6.	Entrepreneurial Environment and Development: Entrepreneurial environment analysis (PESTEL framework), Entrepreneurship Development Programs (EDPs), Start-up ecosystems in India and globally, Government schemes and policies (e.g., MSME, Startup India), Role of institutions: EDII, CIE, incubators, and accelerators.

Text Books:

1. Nigel Cross, "Design Thinking: Understanding How Designers Think and Work", Bloomsbury Academic, 2011
2. Tim Brown, "Change by Design: How Design Thinking Creates New Alternatives for Business and Society", Harper Business, 2019
3. Patrick Van Der Pijl, Justin Lokitz & Lisa Kay Solomon, "Design a Better Business: New Tools, Skills, and Mindset for Strategy and Innovation", Wiley, 2016
4. Peter F. Drucker, "Innovation and Entrepreneurship", Harper Business, 1985

Reference Books:

1. Vijay Kumar, "101 Design Methods: A Structured Approach for Driving Innovation in Your Organization", Wiley, 2019 (2nd Edition).
2. Eric Ries, "The Startup Way: How Modern Companies Use Entrepreneurial Management to Transform Culture and Drive Long-Term Growth", Currency, 2017.
3. Saul Kaplan, "The Business Model Innovation Factory: How to Stay Relevant When the World Is Changing", Wiley, 2018.
4. Jeanne Liedtka & Tim Ogilvie, "The Designing for Growth Field Book: A Step-by-Step Project Guide", Columbia Business School Publishing, 2019.
5. Henry Chesbrough, "Open Innovation Results: Going Beyond the Hype and Getting Down to Business", Oxford University Press, 2020.
6. Alexander Osterwalder & Yves Pigneur, "Value Proposition Design: How to Create Products and Services Customers Want", Wiley, 2019 (2nd Edition).

E-Resources:

1. **Design Thinking – A Primer**, Prof. Srinivasan V (IIT Madras), Introduces core concepts and application of design thinking, **Duration:** 4 Weeks, **URL:** <https://nptel.ac.in/courses/110106124>.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

- 2. Entrepreneurship**, Prof. S. S. Murthy (IIT Delhi), Covers entrepreneurial mindset, innovation, and funding, **Duration:** 8 Weeks, **URL:** <https://nptel.ac.in/courses/127105007>.
- 3. Innovation, Business Models and Entrepreneurship**, Prof. Ashwin Mahalingam (IIT Madras), Explores the link between innovation and business strategy, **Duration:** 8 Weeks, **URL:** <https://nptel.ac.in/courses/110106146>.

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)	Semester: III								
Course: Massive Open Online Course - I	Code: EEPS302								
Teaching Scheme (hrs/week)		Evaluation Scheme (Marks)							
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	PR	OR	Total
04	-	-	04	-	-	100	-	-	100

Prerequisites:

Foundational Knowledge, Learning Tools etc.

Course Objectives:

1. To gain a solid understanding of key ideas and skills in the field of Electrical Engineering, starting from the basics and moving to more advanced topics.
2. To learn at own pace with engaging videos, quizzes, and hands-on activities that keep things interesting.
3. To develop real-world abilities that you can apply in your career, studies, or daily life.
4. To engage with a global community of learners to share ideas and support each other.
5. To build confidence in understanding and be prepared for new opportunities ahead.

Course Outcomes: After completion of this course, students will be able to -

CO1	Apply foundational knowledge by engaging with expert faculty to strengthen core concepts.
CO2	Investigate new and relevant areas within the discipline to broaden their understanding.
CO3	Demonstrate self-directed learning by planning and managing their own study activities.
CO4	Apply critical thinking skills to solve complex problems in engineering, science, and the humanities.
CO5	Communicate ideas clearly and effectively through interaction with peers and instructors.

Guidelines:

Massive Open Online Courses (MOOCs) is essentially an asynchronous teaching learning platform. To enhance the students learning and to motivate self-learning, It is advised to students that they have to register MOOCs courses through SWAYAM NPTEL platform.

SWAYAM-NPTEL Guidelines for Students:

1. Students must register on the **SWAYAM portal** and choose **NPTEL-coordinated** courses offered during the semester.
2. The selected course must be of **8 or 12 weeks' duration**.
3. Courses can be from **Engineering, Science, Humanities, Management, or Multidisciplinary** fields.
4. Students must complete **weekly assignments** and **self-assessment tests** as per the course schedule.
5. To earn credits, students must **register and pay** for the **NPTEL certification exam**.
6. Credits will be awarded **only upon obtaining the certificate**, which must be **submitted to the department**.

DEPARTMENT OF ELECTRICAL ENGINEERING

7. Institutes should **track student enrollments** and **verify certificate authenticity** via the NPTEL portal.

Criteria and calculation for toppers for the NPTEL Online Certification Exams

1. Candidates who get a consolidated score (Assignment score + Exam Score) of 40 or above will be given a certificate.
2. The certificate will display Elite + Gold, or Elite, or Successfully Completed. The score criteria for this is shown below.

Score	Type of Certificate
≥ 90	Elite + Gold Medal
60 – 89	Elite
40 -59	Successfully Completed the course
<40	No certificate

Guidelines for Assessment:

1. NPTEL certificates display grades as a percentage out of 100.
2. This percentage can be directly submitted as term work marks.
3. Internal examiner appointed by the institute will physically verify and assess the certificates and marks at the institute.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)									Semester: III
Course: Dissertation Phase – II									Code: EEPS303
Teaching Scheme (hrs./week)									Evaluation Scheme
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	20	-	10	-	-	50	50	-	100

Prerequisites:

Continuation of Dissertation Phase – I, The research topic should have been formally approved by the Departmental Evaluation Committee and Project Guide. Any major changes in the scope of the topic for Phase I may require re-approval.

Course Objectives:

1. To conduct review of literature to arrive at selected advanced topic for the research work.
2. To enable students to apply their knowledge about research design and methods to develop their project.
3. To inculcate research culture in students for their technical growth.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Identify a topic in advanced areas of design engineering
CO2	Review literature to identify gaps and define the objectives and scope of the work
CO3	Employ the ideas from the literature and develop a research methodology
CO4	Prepare good-quality technical reports based on the project
CO5	Prepare a good-quality research paper

Guidelines for PG Dissertation Work:

All postgraduate M.Tech. Students are required to undertake a comprehensive and research-driven dissertation project as part of their academic curriculum. The objective is to ensure students engage with challenging and contemporary topics in their respective domains, while also contributing to the academic and professional community through research publications.

Project Selection and Scope

1. Continuation from Dissertation Phase-I:

Students **must continue the topic selected during Dissertation Phase-I**. Any modifications or refinements to the scope must be done in consultation with the assigned Supervisor/Guide.

2. Thorough Study and Execution:

The dissertation work should include:

- o Detailed design calculations
- o Analytical modeling and development
- o Prototyping or implementation of models
- o Validation through simulations, experiments, or case studies as applicable

3. Research Publication Requirement:

As part of **Dissertation Phase-II**, students **must prepare at least one review research paper and submit it in a reputed SCI / Scopus / UGC CARE-listed journal** under the supervision of their Guide.

DEPARTMENT OF ELECTRICAL ENGINEERING

Dissertation Supervision and Presentation

4. Project Supervision:

Each student will be assigned a Supervisor/Guide who will mentor and evaluate the progress throughout the project duration. Regular interaction with the Guide is mandatory to ensure focused progress and direction.

5. Research Gap Identification:

Students are required to:

- Analyze and review relevant research papers
- Identify gaps in existing studies
- Formulate a well-defined problem statement in consultation with their Guide

6. Progress Review Presentations:

Students must deliver **four internal progress presentations** during the dissertation period. These presentations should cover:

- Literature survey and problem formulation
- Design methodology and analytical work
- Implementation and results
- Validation and conclusions

All stages will be **evaluated by an internal panel in the presence of the Guide**, and formal feedback will be recorded.

7. Final Dissertation Report Submission:

Students must submit a comprehensive **Dissertation Phase-II report** that includes:

- Introduction to the problem
- Detailed literature survey
- Identified research gaps
- Objectives, Methodology, design calculations
- Development, Testing and Validation
- The report must follow the formatting and structural guidelines provided as below.

INSTRUCTIONS FOR DISSERTATION PHASE - II REPORT WRITING

It is important that the procedures listed below be carefully followed by all the students of M.Tech. (Electrical Engineering).

1. Prepare **Three Hard Bound Copies** of your manuscript.
2. Limit your Dissertation report to 50 – 60 pages (preferably)
3. The footer must include the following:
 - Institute Name, M.Tech. (Electrical) (Power Systems) Times New Roman 10 pt. and centrally aligned.
4. Page number as second line of footer, Times New Roman 10 Pt, centrally aligned.
5. Print the manuscript using
 - a. Letter quality computer printing.
 - b. The main part of manuscript should be Times New Roman 12 pt. with alignment - justified.
 - c. Use 1.5 line spacing.

DEPARTMENT OF ELECTRICAL ENGINEERING

d. Entire report shall be of 5- 7 chapters.
6. Use the paper size **8.5" × 11"** or **A4 (210 × 197 mm)**. Please follow the margins given below.

Margin Location	Paper 8.5" × 11"	Paper A4 (210 × 197 mm)
Top	1"	25.4 mm
Left	1.5"	37 mm
Bottom	1.25"	32 mm
Right	1"	25.4 mm

7. All paragraphs will be 1.5 line spaced with a one blank line between each paragraph. Each paragraph will begin without any indentation.
8. Section titles should be bold with 14 pt typed in all capital letters and should be left aligned.
9. Sub-Section headings should be aligning at the left with 12 pt, bold and Title Case (the first letter of each word is to be capitalized).
10. Illustrations (charts, drawings, photographs, figures) are to be in the text. Use only illustrations really pertinent to the text. Illustrations must be sharp, clear, **black and white. Illustrations downloaded from internet are not acceptable.**
a. Illustrations should not be more than **two** per page. One could be ideal
b. Figure No. and Title at bottom with **12 pt**
c. Legends below the title in **10 pt**
d. Leave proper margin in all sides
e. Illustrations as far as possible should not be Xeroxed.
11. **Photographs** if any should be of glossy prints
12. Please use **SI** system of units. If students would like to add the equivalent in inch-pound (British) units, they must be stated in parenthesis after the **SI** units. In case the final result comes out in any other units (say due to empirical formula etc.) convert the unit to **SI** unit.
13. Please **number the pages** on the front side, centrally below the footer
14. **References** should be either in order as they appear in the thesis or in alphabetical order by last name of first author
15. **Symbols and notations** if any should be included in nomenclature section only
16. Following will be the order of report
i. **Cover page** and **Front page** as per the specimen on separate sheet
ii. **Certificate** from the Institute as per the specimen on separate sheet
iii. **Acknowledgement**
iv. **List of Figures**
v. **List of Tables**
vi. **Nomenclature**
vii. **Contents**
viii. **Abstract** (A brief abstract of the report not more than **150 words**. The heading of abstract i.e. word "Abstract" should be **bold, Times New Roman, 12 pt** and should be typed at the **centre**. The contents of abstract should be typed on new line without space between heading

DEPARTMENT OF ELECTRICAL ENGINEERING

and contents. Try to include one or two sentences each on **motive, method, key-results** and **conclusions** in the Abstract)

1. Introduction (2-3 pages) (TNR – 14 Bold)

1.1 Problem statement (TNR – 12)

1.2 Objectives

1.3 Scope

1.4 Methodology

1.5 Organization of Dissertation

2. Literature Review (20-30 pages)

Discuss the work done so far by researchers in the domain area and their significant conclusions. No derivations, figures, tables, graphs are expected.

3. This chapter shall be based on your own simulation work (Analytical/ Numerical/FEM/CFD) (15- 20 pages)

4. Experimental Validation - This chapter shall be based on your own experimental work (15-20 pages)

5. Concluding Remarks and Scope for the Future Work (2-3 pages)

References

ANNEXURE (if any)

(Put all mathematical derivations, Simulation program as Annexure)

17. All section headings and subheadings should be numbered. For sections use numbers **1, 2, 3,** and for subheadings **1.1, 1.2,** etc and section subheadings **2.1.1, 2.1.2,** etc.

18. **References** should be given in the body of the text and well spread. No verbatim copy or excessive text from only one or two references. If **figures** and **tables** are taken from any reference then indicate source of it. Please follow the following procedure for references

Reference Books:

Collier, G. J. and Thome, J. R., Convective boiling and condensation, 3rd ed., Oxford University Press, UK, 1996, pp. 110 – 112.

Papers from Journal or Transactions:

1. Jung, D. S. and Radermacher, R., Transport properties and surface tension of pure and mixed refrigerants, *ASHRAE Trans*, 1991, 97 (1), pp. 90 – 98.

Papers from Conference Proceedings

1. Colbourne, D. and Ritter, T. J., *Quantitative assessment of flammable refrigerants in room air conditioners*, Proc. of the Sixteenth International Compressor Engineering Conference and Ninth International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, Indiana, USA, 2002, pp. 34 – 40.

Reports, Handbooks etc.

1. United Nations Environmental Programme, Report of the Refrigeration, Air Conditioning and Heat Pumps, Technical Option Committee, 2002, Assessment - 2002.

Patent :- Patent no, Country (in parenthesis)

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)	Semester: III								
Course: Project Management & IPR	Code: EEPS304								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

02 - - 02 - - 50 - - 50

Prerequisites:

Basic Engineering Project Exposure, Fundamentals of Management (Preferred), Core Knowledge in Power System Engineering, Communication and Technical Writing Skills, Awareness of Innovation and Research Trends.

Course Objectives:

1. To understand the fundamentals of project management and its significance in engineering.
2. To develop a comprehensive project plan for a technical/engineering project.
3. To execute and manage engineering projects by applying structured implementation techniques.
4. To understand the types and importance of IPR in technological and academic contexts.
5. To understand the legal framework governing copyright in India.
6. To understand the concept and importance of industrial designs in engineering and innovation.

Course Outcomes: After completion of this course, students will able to -

CO1	Understand the basic concepts of project management, including life cycle, process groups, and organizational structures.
CO2	Develop and integrate comprehensive project plans covering scope, time, cost, risk, communication, and quality, relevant to engineering and research-based projects.
CO3	Apply project implementation strategies including resource allocation, performance tracking, change control, team management.
CO4	Understand the significance and framework of Intellectual Property Rights (IPR) in India.
CO5	Explain the scope and application of copyright laws in India, and analyze the legal rights.
CO6	Understand the concept and legal protection of industrial designs under the Indian Designs Act.

Course Contents:

Unit	Description
1.	Introduction to Project Management: Basic Concepts of Project Management, Project Life Cycle and Phases, Project Environment and Organizational Structures, Project Management Process Groups, Triple Constraints of Project Management, Tools and Techniques.
2.	Developing a Project Plan: Project Planning Overview, Scope Planning, Time Management & Scheduling, Cost Estimation and Budgeting, Resource Planning, Risk Management Planning, Communication and Quality Planning, Integration of Project Plan Components.
3.	Project Implementation: Overview of Project Implementation, Project Execution Processes, Resource Allocation and Management, Project Monitoring and Performance Tracking, Project Change Management,

DEPARTMENT OF ELECTRICAL ENGINEERING

	Team Management and Leadership, Health, Safety & Compliance Considerations.
4.	Introduction to Intellectual Property Rights (IPR) in India: Fundamentals of IPR, Need for IPR in Engineering and Technology, Legal Framework of IPR in India, National and International IPR Organizations, Patentability Criteria in India, Importance of IPR in Academia and R&D.
5.	Copyright in India: Introduction to Copyright, Copyright Law in India, Rights Conferred by Copyright, Registration and Infringement, Limitations and Exceptions, Digital Rights and Copyright in the Internet Era.
6.	Industrial Designs in India (IPR Module): Introduction to Industrial Designs, The Designs Act, 2000 (India), Criteria for Protection, Registration Procedure, Rights and Enforcement, Limitations and Exceptions, Case Studies & Applications

Text Books:

1. Harold Kerzner, "Project Management: A Systems Approach to Planning, Scheduling, and Controlling", McGraw Hill Education
2. Prasanna Chandra, "Project Management", Tata McGraw-Hill
3. Garold D. Oberlender, "Project Management for Engineering and Construction", McGraw Hill
4. James P. Lewis, "Fundamentals of Project Management".
5. Deborah E. Bouchoux, "Intellectual Property Rights", Cengage Learning
6. W.R. Cornish and David Llewelyn, "Intellectual Property: Law and Management".
7. Dr. B.L. Wadehra, "Law Relating to Intellectual Property", Universal Law Publishing

Reference Books:

1. R. Radha Krishnan & S. Balasubramanian, "Intellectual Property Rights in India", Excel Books India.
2. Frederick Betz, "Managing Technological Innovation: Competitive Advantage from Change", Wiley
3. Deepa Goel & Shomini Parashar, "IPR, Biosafety and Bioethics", Pearson Education India
4. P. Narayanan, "Patent Law in India", Eastern Law House (ELH)

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

SYLLABUS
SEMESTER - IV

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)					Semester: IV					
Course: Dissertation Phase – III					Code: EEPS401					
Teaching Scheme (hrs./week)					Evaluation Scheme					
Lecture	Practical	Tutorial	Credit		CIE	ETE	TW	OR	PR	Total
-	32	-	16		-	-	150	100	-	250

Prerequisites:

The student must have completed Dissertation Phase – II with satisfactory performance and approval from the internal/external examiner. The project work must show progress and continuity from Phase II, with the same or refined research problem duly approved by the faculty guide and/or project review committee.

Course Objectives:

1. To develop the ability to independently conduct original research that addresses significant societal, national, and global engineering challenges.
2. To enable students to undertake an independent and original study on a topic of their choice, fostering specialization in their area of interest with faculty guidance.
3. To encourage academic research and critical thinking.
4. To develop their research, technical writing, and presentation skills.

Course Outcomes:

CO1	Problem Identification and Research Design
CO2	Technical Implementation and Analytical Competence
CO3	Research Communication and Publication

Guidelines for PG Dissertation Work:

All postgraduate M.Tech. Students are required to undertake a comprehensive and research-driven dissertation project as part of their academic curriculum. The objective is to ensure students engage with challenging and contemporary topics in their respective domains, while also contributing to the academic and professional community through research publications.

1. Continuation from Dissertation Phase-I and II:

Students **must continue the topic selected during Dissertation Phase-I**. Any modifications or refinements to the scope must be done in consultation with the assigned Supervisor/Guide.

2. Thorough Study and Execution:

The dissertation work should include:

- Detailed design calculations
- Analytical modeling and development
- Prototyping or implementation of models
- Validation through simulations, experiments, or case studies as applicable

3. Research Publication Requirement:

As part of **Dissertation Phase-III**, students **must publish at least one research paper** in a reputed SCI / Scopus / UGC CARE-listed journal under the supervision of their Guide.

4. Dissertation Supervision and Presentation:

DEPARTMENT OF ELECTRICAL ENGINEERING

- Each student will be assigned a Supervisor/Guide who will mentor and evaluate their progress throughout the project, with regular interaction being mandatory to ensure focused development and proper guidance.
- Each student is required to meet their respective guide **at least once a week** and work regularly as per the guide's instructions and feedback.
- Students must deliver **four progress presentations** during the dissertation phase.
- These presentations shall be conducted in front of an **internal panel**, which will be circulated by the **PG Coordinator**.
- **Only after receiving satisfactory remarks in all four progress presentations**, the student will be **eligible to appear for the final dissertation presentation**, which will be conducted by an **external examiner**.
- Timely submission of work, regular interaction with the guide, and adherence to feedback are mandatory for successful completion.

Dissertation Outline

1. Research Gap Identification

Students are required to:

- Analyze and review relevant national and international research papers.
- Identify gaps or limitations in existing studies.
- Formulate a clear and researchable problem statement in consultation with their Guide/Supervisor.

2. Progress Review Presentations

Students must deliver **four internal progress presentations** during the dissertation period, covering the following stages:

1. Literature Survey & Problem Formulation
2. Design Methodology & Analytical Work
3. Implementation & Results
4. Validation & Conclusions

Each stage will be evaluated by an internal review panel in the presence of the Guide, and formal feedback will be documented.

3. Final Dissertation Report Submission

Students are required to submit a comprehensive Phase-II Dissertation Report that includes:

1. Introduction to the research problem
2. Detailed literature survey
3. Identification of research gaps
4. Clearly defined objectives, methodology, and design calculations
5. System development, testing, and validation of results
6. Proper formatting and structure as per the prescribed dissertation guidelines

DEPARTMENT OF ELECTRICAL ENGINEERING

INSTRUCTIONS FOR DISSERTATION PHASE - III REPORT WRITING

It is important that the procedures listed below be carefully followed by all the students of M.Tech. (Mechanical Engineering).

1. Prepare **Three Hard Bound Copies** of your manuscript.
2. Limit your Dissertation report to 50 – 60 pages (preferably)
3. The footer must include the following:
 - Institute Name, M.Tech. (Electrical) (Power Systems) Times New Roman 10 pt. and centrally aligned.
4. Page number as second line of footer, Times New Roman 10 Pt, centrally aligned.
5. Print the manuscript using
 - a. Letter quality computer printing.
 - b. The main part of manuscript should be Times New Roman 12 pt. with alignment - justified.
 - c. Use 1.5 line spacing.
 - d. Entire report shall be of 5- 7 chapters.
6. Use the paper size **8.5" × 11"** or **A4 (210 × 197 mm)**. Please follow the margins given below.

Margin Location	Paper 8.5" × 11"	Paper A4 (210 × 197 mm)
Top	1"	25.4 mm
Left	1.5"	37 mm
Bottom	1.25"	32 mm
Right	1"	25.4 mm

7. All paragraphs will be 1.5 line spaced with a one blank line between each paragraph. Each paragraph will begin without any indentation.
8. Section titles should be bold with 14 pt typed in all capital letters and should be left aligned.
9. Sub-Section headings should be aligning at the left with 12 pt, bold and Title Case (the first letter of each word is to be capitalized).
10. Illustrations (charts, drawings, photographs, figures) are to be in the text. Use only illustrations really pertinent to the text. Illustrations must be sharp, clear, **black and white**. **Illustrations downloaded from internet are not acceptable.**
 - a. Illustrations should not be more than **two** per page. One could be ideal
 - b. Figure No. and Title at bottom with **12 pt**
 - c. Legends below the title in **10 pt**
 - d. Leave proper margin in all sides
 - e. Illustrations as far as possible should not be Xeroxed.
11. **Photographs** if any should be of glossy prints
12. Please use **SI** system of units. If students would like to add the equivalent in inch-pound (British) units, they must be stated in parenthesis after the **SI** units. In case the final result comes out in any other units (say due to empirical formula etc.) convert the unit to **SI** unit.
13. Please **number the pages** on the front side, centrally below the footer
14. **References** should be either in order as they appear in the thesis or in alphabetical order by last name of first author

DEPARTMENT OF ELECTRICAL ENGINEERING

15. **Symbols and notations** if any should be included in nomenclature section only

16. Following will be the order of report

- i. **Cover page** and **Front page** as per the specimen on separate sheet
- ii. **Certificate** from the Institute as per the specimen on separate sheet
- iii. **Acknowledgement**
- iv. **List of Figures**
- v. **List of Tables**
- vi. **Nomenclature**
- vii. **Contents**
- viii. **Abstract** (A brief abstract of the report not more than **150 words**. The heading of abstract i.e. word “Abstract” should be **bold**, **Times New Roman**, **12 pt** and should be typed at the **centre**. The contents of abstract should be typed on new line without space between heading and contents. Try to include one or two sentences each on **motive**, **method**, **key-results** and **conclusions** in the Abstract)

1. Introduction (2-3 pages) (TNR – 14 Bold)

- 1.1 Problem statement (TNR – 12)
- 1.2 Objectives
- 1.3 Scope
- 1.4 Methodology
- 1.5 Organization of Dissertation

2. Literature Review (20-30 pages)

Discuss the work done so far by researchers in the domain area and their significant conclusions. No derivations, figures, tables, graphs are expected.

3. This chapter shall be based on your own simulation work (Analytical/ Numerical/FEM/CFD) (15- 20 pages)

4. Experimental Validation - This chapter shall be based on your own experimental work (15-20 pages)

5. Concluding Remarks and Scope for the Future Work (2-3 pages)

References

ANNEXURE (if any)

(Put all mathematical derivations, Simulation program as Annexure)

17. All section headings and subheadings should be numbered. For sections use numbers **1, 2, 3,** and for subheadings **1.1, 1.2,** etc and section subheadings **2.1.1, 2.1.2,** etc.

18. **References** should be given in the body of the text and well spread. No verbatim copy or excessive text from only one or two references. If **figures** and **tables** are taken from any reference then indicate source of it. Please follow the following procedure for references

Reference Books:

Collier, G. J. and Thome, J. R., Convective boiling and condensation, 3rd ed., Oxford University Press, UK, 1996, pp. 110 – 112.

Papers from Journal or Transactions:

1. Jung, D. S. and Radermacher, R., Transport properties and surface tension of pure and mixed refrigerants, *ASHRAE Trans*, 1991, 97 (1), pp. 90 – 98.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

Papers from Conference Proceedings

1. Colbourne, D. and Ritter, T. J., *Quantitative assessment of flammable refrigerants in room air conditioners*, Proc. of the Sixteenth International Compressor Engineering Conference and Ninth International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, Indiana, USA, 2002, pp. 34 – 40.

Reports, Handbooks etc.

1. United Nations Environmental Programme, Report of the Refrigeration, Air Conditioning and Heat Pumps, Technical Option Committee, 2002, Assessment - 2002.

Patent :- Patent no, Country (in parenthesis)

DEPARTMENT OF ELECTRICAL ENGINEERING

Program: M. Tech. (Electrical – Power Systems)							Semester: IV											
Course: Massive Open Online Course – II							Code: EEPS402											
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)														
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	PR	OR	Total									
04	-	-	04	-	-	100	-	-	100									
Prerequisites:																		
Foundational Knowledge, Learning Tools etc.																		
Course Objectives:																		
<ol style="list-style-type: none"> 1. To gain a solid understanding of key ideas and skills in the field of Electrical Engineering, starting from the basics and moving to more advanced topics. 2. To learn at own pace with engaging videos, quizzes, and hands-on activities that keep things interesting. 3. To develop real-world abilities that you can apply in your career, studies, or daily life. 4. To engage with a global community of learners to share ideas and support each other. 5. To build confidence in understanding and be prepared for new opportunities ahead. 																		
Course Outcomes: After completion of this course, students will be able to -																		
CO1	Apply foundational knowledge by engaging with expert faculty to strengthen core concepts.																	
CO2	Investigate new and relevant areas within the discipline to broaden their understanding.																	
CO3	Demonstrate self-directed learning by planning and managing their own study activities.																	
CO4	Apply critical thinking skills to solve complex problems in engineering, science, and the humanities.																	
CO5	Communicate ideas clearly and effectively through interaction with peers and instructors.																	
Guidelines:																		
Massive Open Online Courses (MOOCs) is essentially an asynchronous teaching learning platform. To enhance the students learning and to motivate self-learning, It is advised to students that they have to register MOOCs courses through SWAYAM NPTEL platform.																		
SWAYAM-NPTEL Guidelines for Students:																		
<ol style="list-style-type: none"> 1. Students must register on the SWAYAM portal and choose NPTEL-coordinated courses offered during the semester. 2. The selected course must be of 8 or 12 weeks' duration. 3. Courses can be from Engineering, Science, Humanities, Management, or Multidisciplinary fields. 4. Students must complete weekly assignments and self-assessment tests as per the course schedule. 5. To earn credits, students must register and pay for the NPTEL certification exam. 6. Credits will be awarded only upon obtaining the certificate, which must be submitted to the department. 																		

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRICAL ENGINEERING

7. Institutes should **track student enrollments** and **verify certificate authenticity** via the NPTEL portal.

Criteria and calculation for toppers for the NPTEL Online Certification Exams

1. Candidates who get a consolidated score (Assignment score + Exam Score) of 40 or above will be given a certificate.
2. The certificate will display Elite + Gold, or Elite, or Successfully Completed. The score criteria for this is shown below.

Score	Type of Certificate
≥ 90	Elite + Gold Medal
60 – 89	Elite
40 -59	Successfully Completed the course
<40	No certificate

Guidelines for Assessment:

1. NPTEL certificates display grades as a percentage out of 100.
2. This percentage can be directly submitted as term work marks.
3. Internal examiner appointed by the institute will physically verify and assess the certificates and marks at the institute.