

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

Curriculum Structure and Syllabus of

S.Y. M. Tech. – Computer Engineering

(Data Sciences)

(With effect from - Academic Year 2025 - 26)

VISION OF THE INSTITUTE

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION OF THE INSTITUTE

- To achieve academic excellence through innovative teaching and learning process.
 - To imbibe the research culture for addressing industry and societal needs.
 - To inculcate social attitude through community engagement initiatives.
 - To provide conducive environment for building the entrepreneurial skills.

DEPARTMENT OF COMPUTER ENGINEERING

VISION:

To emerge as a department of repute in Computer Engineering through innovative teaching, research, social responsibility, and entrepreneurial skills, developing responsible IT professionals.

MISSION:

- M1:** To provide in depth technical education and hands-on experiences in Computer engineering using modern tools and technologies.
- M2:** To endeavor innovative research culture to fulfill the needs of Industry and Society.
- M3:** To instill in students a deep sense of social responsibility.
- M4:** To strengthen collaboration between industry and academia, fostering the development of entrepreneurial skills among the students.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- PEO1:** Graduates will apply knowledge of computer engineering to solve complex engineering problems, propose algorithmic solutions, thus establishing themselves as successful IT professional.
- PEO2:** Graduates will exhibit leadership qualities and innovative thinking, contributing to the development of cutting-edge solutions and career advancements in the field of computer engineering through research, collaborative teamwork and entrepreneurial initiatives.
- PEO3:** Graduates will maintain ethics, meet societal duties, and pursue life-long learning to stay updated and contribute meaningfully to their field and the society.

PROGRAM OUTCOMES (POs):

- PO1:** An ability to independently carry out research /investigation and development work to solve practical problems.
- PO2:** An ability to write and present a substantial technical report/document.
- PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

PROGRAM SPECIFIC OUTCOMES (PSOs):

- PSO1.** Professional Skills-The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexities.
- PSO2.** Problem-Solving Skills- The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success
- PSO3.** Successful Career and Entrepreneurship- The ability to employ modern computer languages, environments and platforms in creating innovative career paths to be an entrepreneur and to have a zest for higher studies.

DEPARTMENT OF COMPUTER ENGINEERING

LIST OF ABBREVIATIONS

Abbreviation	Description
PCC	Programme Core Course
PEC	Programme Elective Course
OEC	Multidisciplinary Minor
LC	Open Elective - Other than a particular program
SEM	Vocational and Skill Enhancement Course
MC	Management Courses
DIS	Dissertation Phase
MOOC	Massive Open Online Course – I
M. Tech	Master of Technology
L	Lecture
P	Practical
T	Tutorial
H	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Evaluation
TW	Term Work
OR	Oral
PR	Project

DEPARTMENT OF COMPUTER ENGINEERING**Second Year M. Tech. – Data Sciences : Semester - III**

Course Code	Course Type	Course Name	Teaching Scheme (hrs./Week)						Evaluation Scheme (Marks)					
			L	P	H	CR			CIE	ETE	TW	PR	OR	Total
						TH	PR	Total						
CODS301	OEC	Open Elective – III [#]	4	-	4	4	-	4	50	50	-	-	-	100
CODS302	MOOC	Massive Open Online Course – I	4	-	4	4	-	4	-	-	100	-	-	100
CODS303	DIS	Dissertation Phase – II	-	20	20	-	10	10	-	-	50	-	50	100
CODS304	HSMC	Advanced Data Science Laboratory	-	4	4	-	2	2	-	-	50	-	-	50
Total			8	24	32	8	12	20	50	50	200	-	50	350

Open Elective – III: Choose any one from the following:

Course Code	Course Type	Open Elective – III	Offered by Department
MEDS301	OEC	Advanced Computer Vision & Image Processing	Computer
EEPS301		Energy Management & Auditing	Electrical
ETIS301		Renewable Energy Studies	E&TC
MEDE301		Design thinking, Innovation and Entrepreneurship	Mechanical

BoS Chairman
DirectorZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

DEPARTMENT OF COMPUTER ENGINEERING**Second Year M. Tech. – Data Sciences : Semester - IV**

Course Code	Course Type	Course Name	Teaching Scheme (hrs./Week)						Evaluation Scheme (Marks)					
			L	P	H	CR			CIE	ETE	TW	PR	OR	
TH	PR	Total	CIE	ETE	TW	PR	OR	Total						
CODS401	DIS	Dissertation Phase - III	-	32	32	-	16	16	-	-	150	-	100	250
CODS402	MOOC	Massive Open Online Course /Internship*	4	-	4	4	-	4	-	-	100	-	-	100
Total			4	32	36	4	16	20	-	-	250	-	100	350

BoS Chairman

Director
ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

INDEX

Sr. No.	Course Code	Course Name	Page No.
Second Year M. Tech. : Semester - I			
1	CODS301	Open Elective – III [#]	07
2	CODS302	Massive Open Online Course – I	16
3	CODS303	Dissertation Phase – II	18
4	CODS304	Advanced Data Science Laboratory	22
Second Year M. Tech. : Semester – II			
5	CODS401	Dissertation Phase – III	25
6	CODS402	Massive Open Online Course – II /Internship*	30

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

SYLLABUS
SEMESTER - III

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Science)	Semester: III								
Course: Open Elective – III (Advanced Computer Vision & Image Processing)	Code: CODS301								
Teaching Scheme (hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	50	50	-	-	-	100

Prerequisites:

OpenCV (Python/C++), MATLAB, and image analysis libraries, Scikit-image, NumPy, and PyWavelets.

Course Objectives:

1. To introduce the fundamental principles of image formation, camera models, and essential techniques used in computer vision and image processing.
2. To explain advanced methods for image enhancement, restoration, feature extraction, and representation required for complex vision tasks.
3. To explore segmentation techniques, object representation methods, motion analysis, and algorithmic approaches for understanding visual scenes.
4. To develop a thorough understanding of 3D vision concepts, including stereo imaging, depth estimation, and reconstruction techniques used in real-world applications.
5. To provide knowledge of deep learning architectures and modern AI frameworks for image classification, object detection, and image segmentation.
6. To introduce generative models, emerging trends, ethical considerations, and practical applications of computer vision in industry.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Understand advanced image formation, camera models, and preprocessing techniques for computer vision.
CO2	Apply enhancement, restoration, and feature extraction methods to analyze and improve images.
CO3	Implement advanced segmentation, representation, and motion analysis algorithms in vision tasks.
CO4	Develop 3D vision solutions using stereo vision, depth estimation, and reconstruction techniques.
CO5	Build and evaluate deep learning models for image classification, detection, and segmentation.
CO6	Apply generative models, emerging AI techniques, and ethical principles in modern computer vision applications.

Course Contents:

Unit	Description
1.	<p>Fundamentals of Computer Vision & Advanced Image Formation: Image formation models, radiometry, reflectance, advanced camera models (pinhole, fisheye, omnidirectional), geometric transformations, color spaces, sampling, quantization, image interpolation, HDR imaging, multi-view geometry basics, and camera calibration techniques (intrinsic & extrinsic parameters).</p>

DEPARTMENT OF COMPUTER ENGINEERING

2.	Image Enhancement, Restoration & Feature Engineering: Spatial and frequency domain enhancement, wavelet transforms, noise modelling, advanced denoising (Non-local Means, BM3D), deblurring, blind deconvolution, super-resolution, filtering, edge detection, segmentation basics, and feature extraction methods (Harris, SIFT, SURF, ORB, HOG, LBP, GLCM).
3.	Advanced Segmentation, Object Representation & Vision Algorithms: Graph-based segmentation (Normalized Cuts, GrabCut), active contours (Snakes), level-set methods, watershed, morphological processing, contour detection, shape descriptors, texture analysis, region descriptors, optical flow (dense & sparse), object tracking (Kalman filter, Particle filter, Meanshift, CAMShift), and motion analysis. Applications include medical imaging, surveillance, and robotics.
4.	3D Computer Vision, Depth, Motion & Reconstruction: Stereo vision, disparity maps, epipolar geometry, essential/fundamental matrices, triangulation, projective geometry, Structure-from-Motion (SfM), Visual Odometry, SLAM (MonoSLAM, ORB-SLAM), depth sensing technologies (LiDAR, ToF cameras), point cloud processing, and 3D reconstruction
5.	Deep Learning for Computer Vision & AI Models: CNN architectures (LeNet, VGG, ResNet, DenseNet, MobileNet, EfficientNet), object detection (Faster R-CNN, YOLO, SSD), segmentation (FCN, U-Net, DeepLab), instance segmentation (Mask R-CNN), Vision Transformers (ViT, Swin Transformer), multimodal models (CLIP), data augmentation, transfer learning, model optimisation,
6.	Generative Models, Ethics, Applications & Emerging Trends: GANs (DCGAN, CycleGAN, StyleGAN), diffusion models, image-to-image translation, 3D generative models, deepfake detection, self-supervised learning (SimCLR, MoCo), reinforcement learning for vision, real-time edge vision, Vision–Language models, digital twins, and ethical considerations (privacy, surveillance risks, bias, fairness).

Text Books:

1. Szeliski Richard, “Computer Vision: Algorithms and Applications”, Springer, 2022 (Latest Edition)
2. Gonzalez Rafael C., & Woods Richard E., “Digital Image Processing”, Pearson, 2018

Reference Books:

1. Forsyth David, & Ponce Jean – “Computer Vision: A Modern Approach”, Pearson, 2011.
2. Goodfellow Ian, Bengio Yoshua, & Courville Aaron – “Deep Learning”, MIT Press, 2016.
3. Hartley Richard, & Zisserman Andrew – “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003.
4. Bradski Gary, & Kaehler Adrian – “Learning OpenCV”, O'Reilly Media, 2008.
5. Prince Simon – “Computer Vision: Models, Learning, and Inference”, Cambridge University Press, 2012.
6. Krizhevsky Alex, & Sutskever Ilya – “Neural Networks for Vision”, Various Academic Sources.
7. Stanford CS231N – “Convolutional Neural Networks for Visual Recognition”, Stanford University (Course Notes & Research Papers).

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Electrical – Power Systems)	Semester: III								
Course: Open Elective – III (Energy Management & Auditing)	Code: EEPS301								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

04 - - 04 50 50 - - - 100

Prerequisites:

Energy Scenario, Engineering Measurements and Instrumentation, Computer Skills

Course Objectives:

1. To provide students with a strong foundation in energy principles, including types of energy, energy conversion and energy flow in systems.
2. To introduce the core concepts and strategies of energy management, including planning, monitoring and optimization of energy usage in various sectors.
3. To train students to analyze energy data and prepare professional energy audit reports with recommendations and cost-benefit analysis.
4. To equip students with the skills and methodologies required to conduct energy audits in industrial, commercial and residential settings.

Course Outcomes: After completion of this course, students will be able to -

CO1	Identify and describe present state of energy security and its importance.
CO2	Identify and describe the basic principles and methodologies adopted in energy audit of utility.
CO3	Describe the energy performance evaluation of some common electrical and thermal installations and identify the energy-saving opportunities.
CO4	Analyze the data collected during the performance evaluation and recommend energy saving measures.
CO5	Analyze energy consumption patterns and identify saving opportunities.
CO6	Explain the principles of energy management and energy conservation.

Course Contents:

Unit	Description
1.	Basic Principles of Energy Audit: Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes, Energy audit of industries, energy saving potential, energy audit of process industry, thermal power station, building energy audit. Need for energy management, energy basics, designing and starting an energy management program, energy audit process, energy accounting, energy monitoring, targeting and reporting.
2.	Energy Cost and Load Management: Important concepts in an economic analysis, economic models, time value of money, utility rate structures, cost of electricity, loss evaluation. Load management: demand control techniques, utility monitoring and control system, HVAC and energy management, economic justification.

DEPARTMENT OF COMPUTER ENGINEERING

3.	Energy Efficient Motors: Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics, variable speed, variable duty cycle systems, RMS hp, voltage variation, voltage unbalance, over motoring, motor energy audit applications to Systems and equipment such as: electric motors, transformers and reactors, capacitors and synchronous machines.
4.	Metering for Energy Management: Relationships between parameters, Units of measure, typical cost factors, utility meters, timing of meter disc for kilowatt measurement, demand meters, paralleling of current transformers, instrument transformer burdens, multitasking solid-state meters, metering location vs. requirements, metering techniques and practical examples.
5.	Lighting Systems and Cogeneration: Concept of lighting systems, the task and the working space, light sources, ballasts, luminaries, lighting controls, optimizing lighting energy, power factor and effect of harmonics on power quality, cost analysis techniques, lighting and energy standards. Cogeneration: forms of cogeneration, feasibility of cogeneration, electrical interconnection.
6.	Economic Aspects and Analysis: Economic Analysis, Depreciation Methods, time value of money, rate of return, present worth method, replacement analysis, life cycle costing analysis, Energy efficient motors, calculation of simple payback method, net present worth method, Power factor correction, lighting, Applications of life cycle costing analysis, return on investment.

Text Books:

1. Eastop T.D and Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, 1990.
2. Reay D.A., "Industrial Energy Conservation", first edition, Pergamon Press, 1977.
3. Energy Audit and Management, Volume-I, IECC Press.
4. W.R. Murphy, G. McKay Butter worth; Energy management, Elsevier/bsp Books Pvt. Ltd., 2003.
5. Gupta B. R.: Generation of Electrical Energy, Eurasia Publishing House Pvt. Ltd., New Delhi, 2001
6. Prasanna Chandra, "Financial management", Tata McGraw Hill, 10th Edition, 2019.

Reference Books:

1. IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities, IEEE, 1996.
2. Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.
3. Barney L. Capehart, Wayne C. Turner and William J. Kennedy, "Guide to Energy Management", Fifth Edition, The Fairmont Press, Inc., 2006.
4. Albert Thumann, P.E., C.E.M. William J. Younger, "Handbook of Energy Audits", River Publishers.
5. Paul O'Callaghan, "Energy management", McGraw-Hill Education, 1992.
6. CB Smith, "Energy Management Principles", Pergamon Press, New York.
7. W. C. Turner, "Energy Management Hand Book", John Wiley and sons.

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (E&TC – IoT and Sensor Systems)	Semester: III								
Course: Open Elective – III (Renewable Energy Studies)	Code: ETIS301								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

04	-	-	04	50	50	-	-	-	100
----	---	---	----	----	----	---	---	---	-----

Prerequisites:

Familiarity with concepts such as energy, power, voltage, current, and basic circuit theory, Awareness of environmental issues and the need for sustainable development is beneficial.

Course Objectives:

1. To provide students with a comprehensive understanding of various renewable energy technologies including solar, wind, biomass, hydro, and emerging systems like fuel cells and ocean energy.
2. To equip students with the knowledge to analyze, design, and evaluate renewable energy systems in the context of global and Indian energy needs.

Course Outcomes: After completion of this course, students will be able to -

CO1	Explain the need, potential, and classification of renewable energy sources, along with their environmental and economic impact.
CO2	Analyze photovoltaic system components and performance characteristics for both grid-connected and off-grid solar applications.
CO3	Evaluate the performance of wind energy systems based on wind speed, turbine type, and system configuration.
CO4	Classify biomass resources and explain the technologies used for conversion into usable energy forms.
CO5	Assess the working principles and feasibility of small hydro, tidal, and wave energy systems for power generation.
CO6	Compare emerging technologies such as geothermal, ocean thermal, and fuel cells based on operating principles and energy output.

Course Contents:

Unit	Description
1.	Introduction to Renewable Energy Systems: Overview of global and Indian energy scenario, Need and significance of renewable energy, Classification and comparison of renewable energy sources, Environmental impact and sustainability, Government policies and incentives for renewable energy, Introduction to hybrid systems and energy storage.
2.	Photovoltaic (Solar) Energy Systems: Introduction to photovoltaic systems, Major types of PV systems: Standalone and Grid-connected, Current–voltage (I–V) curves for loads, Peak sun hours and estimation of PV performance, DC and AC rated power, Capacity factor and efficiency, PV-powered water

DEPARTMENT OF COMPUTER ENGINEERING

	pumping and applications in rural India, Scope and advantages of off-grid PV systems for inclusive growth, Introduction to solar inverters, MPPT, and system sizing
3.	Wind Energy Conversion Systems: Wind resource assessment: wind speed, wind power density, Wind power extraction principles and Betz limit, Wind turbine types: horizontal and vertical axis, Components of wind energy systems, Tower height and wind speed relationship, Variable speed operation and maximum power tracking, Safety, maintenance, and grid integration of wind farms.
4.	Biomass and Waste-to-Energy Technologies: Biomass resources: agricultural, forestry, and animal waste, Energy content and types of biomass fuels, Biomass conversion technologies: combustion, gasification, pyrolysis, Biomass-fired boilers and co-firing with coal, Municipal solid waste to energy: technology and challenges, Biogas plants and their role in rural electrification, Case studies of community-level biomass systems
5.	Small Hydro, Tidal, and Wave Energy: Introduction to mini and micro hydel schemes, Components and layout of small hydro power plants, Economics and feasibility of small hydro plants, Tidal energy: principles, potential and technology, Wave energy: energy extraction and device types, Environmental and ecological impact of hydro and marine systems
6.	Emerging Technologies: Geothermal, OTEC & Fuel Cells: Geothermal energy: sources, extraction technologies, and viability, Ocean Thermal Energy Conversion (OTEC): principles and systems, Introduction to fuel cells, Types of fuel cells (PEMFC, SOFC, etc.), Operating characteristics, efficiency, and energy output, Future trends in renewable energy: Hydrogen energy, hybrid RE systems, smart grids.

Text Books:

1. D.P. Kothari, K.C. Singal & Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies", PHI Learning, 2nd or 3rd Edition.
2. G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, Latest Edition.
3. V.V.N. Kishore, "Renewable Energy Engineering and Technology – A Knowledge Compendium", The Energy and Resources Institute (TERI Press).

Reference Books:

1. R. Ramesh, "Renewable Energy Technologies", Narosa Publishing House.
2. S. Rao & Parulkar, "Energy Technology", Khanna Publishers.
3. Mittal, "Non-Conventional Energy Systems", Wheeler Publishing.

Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Mechanical – Design Engineering)	Semester: III								
Course: Open Elective – III (Design thinking, Innovation and Entrepreneurship)	Code: MERA301								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

04 - - 04 50 50 - - - 100

Prerequisites:

Course is expected to have a basic understanding of engineering design principles, analytical problem-solving skills, and effective communication abilities. Prior exposure to design projects or interdisciplinary teamwork is desirable. An open mindset, willingness to collaborate, and readiness to engage with user-centric and creative approaches are essential for making the most of this experiential and innovation-driven course.

Course Objectives:

1. To introduce students to the principles and process of design thinking
2. To develop an understanding of innovation frameworks and tools
3. To build foundational knowledge in entrepreneurship
4. To empower students to translate ideas into actionable business models

Course Outcomes: At the end of the course, the student will be able to -

CO1	Understand the fundamentals of design thinking.
CO2	Apply empathy and define user-centric problems.
CO3	Analyze various types of innovation and their strategic role in modern businesses and start-ups.
CO4	Analyze types and roles of innovation in business.
CO5	Explain core concepts and types of entrepreneurship.
CO6	Evaluate the entrepreneurial ecosystem and support systems.

Course Contents:

Unit	Description
1.	<p>Fundamentals of Design Thinking: Definition and Origin of Design Thinking, Design Thinking vs. Traditional Design, Importance and Relevance of Design Thinking, Types of Thinking Processes, Common Methods to Influence Human Thinking, Problem Solving and the Need for Design Thinking, Design Thinking Process Models and Tools.</p>
2.	<p>Empathize and Define: Phases of Design Thinking, How to Empathize: Role and Purpose, Empathy Mapping: Tools and Techniques, Personas Development,</p> <p>Integrated Design Research: Reviewing Literature, Identifying Literature, Summarizing Literature; Determining Research Focus, Identifying and Defining Factors and Links of Interest, Formulating Research Questions and Hypotheses, Techniques for Refining Research Questions and Hypotheses, Developing Research Plan.</p>

DEPARTMENT OF COMPUTER ENGINEERING

3.	Understanding Innovation in the Business: Definition and types of innovation (Product, Process, Business Model, Service), Technological innovation vs. non-technological innovation, Innovation megatrends impacting global industries, Characteristics and needs of innovation in entrepreneurship, Innovation in start-ups vs. traditional businesses.
4.	Innovation Tools and Methods: Ideation techniques (SCAMPER, Brainstorming, Mind Mapping), Innovation Process Models (Design Thinking, Lean Startup), Open innovation and co-creation, Innovation funnel and stage-gate processes, Measuring innovation performance and impact.
5.	Fundamentals of Entrepreneurship: Definition and objectives of entrepreneurship, Types of entrepreneurs: Intrapreneurs, Social entrepreneurs, Technopreneurs, Entrepreneurial mindset and risk-taking, Role of entrepreneurship in economic development.
6.	Entrepreneurial Environment and Development: Entrepreneurial environment analysis (PESTEL framework), Entrepreneurship Development Programs (EDPs), Start-up ecosystems in India and globally, Government schemes and policies (e.g., MSME, Startup India), Role of institutions: EDII, CIE, incubators, and accelerators.

Text Books:

1. Nigel Cross, "Design Thinking: Understanding How Designers Think and Work", Bloomsbury Academic, 2011
2. Tim Brown, "Change by Design: How Design Thinking Creates New Alternatives for Business and Society", Harper Business, 2019
3. Patrick Van Der Pijl, Justin Lokitz & Lisa Kay Solomon, "Design a Better Business: New Tools, Skills, and Mindset for Strategy and Innovation", Wiley, 2016
4. Peter F. Drucker, "Innovation and Entrepreneurship", Harper Business, 1985

Reference Books:

1. Vijay Kumar, "101 Design Methods: A Structured Approach for Driving Innovation in Your Organization", Wiley, 2019 (2nd Edition).
2. Eric Ries, "The Startup Way: How Modern Companies Use Entrepreneurial Management to Transform Culture and Drive Long-Term Growth", Currency, 2017.
3. Saul Kaplan, "The Business Model Innovation Factory: How to Stay Relevant When the World Is Changing", Wiley, 2018.
4. Jeanne Liedtka & Tim Ogilvie, "The Designing for Growth Field Book: A Step-by-Step Project Guide", Columbia Business School Publishing, 2019.
5. Henry Chesbrough, "Open Innovation Results: Going Beyond the Hype and Getting Down to Business", Oxford University Press, 2020.
6. Alexander Osterwalder & Yves Pigneur, "Value Proposition Design: How to Create Products and Services Customers Want", Wiley, 2019 (2nd Edition).

E-Resources:

1. **Design Thinking – A Primer**, Prof. Srinivasan V (IIT Madras), Introduces core concepts and application of design thinking, **Duration:** 4 Weeks, **URL:** <https://nptel.ac.in/courses/110106124>.

DEPARTMENT OF COMPUTER ENGINEERING

- 2. Entrepreneurship**, Prof. S. S. Murthy (IIT Delhi), Covers entrepreneurial mindset, innovation, and funding, **Duration:** 8 Weeks, **URL:** <https://nptel.ac.in/courses/127105007>.
- 3. Innovation, Business Models and Entrepreneurship**, Prof. Ashwin Mahalingam (IIT Madras), Explores the link between innovation and business strategy, **Duration:** 8 Weeks, **URL:** <https://nptel.ac.in/courses/110106146>.

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Science)	Semester: III								
Course: Massive Open Online Course (MOOCs)	Code: CODS302								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
04	-	-	04	-	-	100	-	-	100

Prerequisites:

Basic math, programming, or subject-specific foundational knowledge.

Course Objectives:

1. To develop a strong understanding of the core concepts, principles, and theories within the subject matter.
2. To learn to analyze information critically, evaluate arguments, and form well-reasoned conclusions.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Explain the fundamental concepts, principles, and theories covered in the course.
CO2	Apply their knowledge to real-world scenarios and solve problems related to the subject matter.
CO3	Actively participate in online discussions, share their knowledge and perspectives, and learn from their peers.
CO4	Evaluate their own learning process, identify areas for improvement, and demonstrate a commitment to continuous learning.

Course Contents:

Description

A Massive Open Online Course (MOOC) is an online course aimed at unlimited participation and open access via the web. In addition to traditional course materials, such as filmed lectures, readings, and problem sets, many MOOCs provide interactive courses with user forums to support community interactions among students, professors, and teaching assistants, as well as immediate feedback to quick quizzes and assignments.

APPLICATIONS OF MOOCS • Professional development • Skill development • Fostering soft skills, inculcating research etc. • Development of knowledge.

Student need to select any one topic for MOOC courses.

NPTEL (SWAYAM Courses)

National Programme on Technology Enhanced Learning (NPTEL) is a project of MHRD created to provide quality education to students and knowledge seekers anywhere in the world from faculty in top ranking institutions like IITs and IISc for free. It provides web and video courses across 23 disciplines as certification courses.

Some notable MOOCs providers :

1. SWAYAM Courseware : <https://swayam.gov.in/>
2. MIT Opencourseware : <https://ocw.mit.edu/index.htm>

DEPARTMENT OF COMPUTER ENGINEERING

3. Stanford ONLINE : <http://online.stanford.edu/>
4. Coursera : <https://www.coursera.org/>
5. IIT BombayX : <https://www.iitbombayx.in/>
6. Khanacademy : <https://www.khanacademy.org/>
7. Udacity : <https://in.udacity.com/>
8. edx : <https://www.edx.org/>
9. Swayam : <https://swayam.gov.in/>
10. mooKIT : <https://www.mookit.in/>
11. Spoken-tutorial : <https://spoken-tutorial.org/>
12. Open Classroom : <https://openclassrooms.com>

Institute Guideline for online MOOC Course-

1. MOOC Course registration / approval

Student will register for MOOC Course in consultation with Mentor / Guide / Supervisor allotted from the Institute. The topic and concerned course should be approved by Programme Coordinator / Head of Department.

2. Course Progress Monitoring/Review

Student will submit the periodic progress to Mentor / Guide / Supervisor and Programme Coordinator / Head of Department. Mentor / Guide / Supervisor and Programme Coordinator will conduct the review as per need of the course requirement (if required)

3. Evaluation and Grading

Mentor / Guide / Supervisor and Programme Coordinator will verify the certificate of completion of the course and allocate equivalent score and grade based on grade / score mentioned in the certificate. If certificate does not reflect any grade / score, under such situation Mentor / Guide / Supervisor and Programme Coordinator will evaluate the student by conducting appropriate examination (Theory / Practical / Seminar).

4. Reporting of Grade / Score to Examination Department

Mentor / Guide / Supervisor and Programme Coordinator will submit the evaluation report alongwith supporting document to examination Department.

Text Books:

As per Listed topics

Reference Books:

As per Listed topics

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Science)	Semester: III								
Course: Dissertation Phase – II	Code: CODS303								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

-	20	-	10	-	-	50	50	-	100
---	----	---	----	---	---	----	----	---	-----

Prerequisites:

1. Dissertation Phase – I (Problem Identification & Preliminary Study)
2. Courses in Advanced Machine Learning, Big Data Analytics, and Research Methodology
3. Knowledge of programming (Python/R/Scala) and relevant tools (TensorFlow, PyTorch, Spark, etc.)

Course Objectives:

1. To enable the students to develop and implement the proposed methodology outlined in Phase I.
2. To provide hands-on experience with data collection, model development, and experimental design.
3. To enhance the ability to analyze, interpret, and evaluate results in alignment with research objectives.
4. To encourage critical thinking, originality, and innovation in solving data-driven problems.
5. To strengthen academic writing and presentation skills through progress reviews and documentation.
6. To prepare students for Phase III/IV (Final Dissertation) and potential publication or industry implementation.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Develop a complete research plan and execute the designed methodology.
CO2	Handle large-scale data collection and preprocessing.
CO3	Design, implement, and test analytical or predictive models.
CO4	Analyze experimental results and interpret findings.
CO5	Present and document intermediate research outcomes.

Course Contents:

Sr. no.	Description
1.	Review and Enhancement of Research Framework: Reassessment of objectives, scope, and hypothesis from Phase I., Identification of refined research questions based on faculty/committee feedback. Establishing the experimental environment, datasets, and computational resources.
2.	Data Acquisition and Preprocessing : Data sourcing from open repositories, APIs, IoT devices, or enterprise databases. Data cleaning, normalization, transformation, and feature engineering. Addressing missing values, noise, and imbalance issues.

DEPARTMENT OF COMPUTER ENGINEERING

3.	Model Design and Algorithm Development : Selection and justification of machine learning / deep learning / statistical models. Implementation of algorithms using frameworks such as TensorFlow, PyTorch, or Spark MLlib. Optimization, hyperparameter tuning, and experimental configuration.
4	Experimental Analysis and Evaluation : Performance assessment using evaluation metrics (Accuracy, F1, RMSE, AUC, etc.). Comparative analysis with baseline models or existing literature. Interpretation of results, visualization, and insights. Identification of limitations and scope for improvement.
5.	Documentation, Progress Review, and Presentation : Preparation of the Interim Dissertation Report covering Introduction, Literature Review, Methodology, and Results. Oral presentation and defense before the Departmental Review Committee. Incorporation of feedback for Phase III continuation.
6.	Expected Outcomes / Deliverables: Well-defined and partially implemented research solution (prototype or model). Comprehensive progress report including results and analysis. Presentation before departmental panel. Preparedness for Dissertation Phase III (Final Implementation & Thesis Submission).

Activities to be conducted in Semester:

- Proposal Submission:** Students submit a project proposal with objectives, scope, and methodology.
- Periodic Progress Reports:** Bi-weekly or monthly updates to mentor/supervisor.
- Seminars / Mid-Semester Presentations:** Presenting progress and challenges.
- Project Execution:** Hands-on project work in industry or in-house lab.
- Final Report Submission:** Complete project report including results, analysis, and recommendations.
- Final Seminar / Viva:** Oral presentation and Q&A evaluation before faculty and peers.

Guidelines for PG Dissertation Work:

All postgraduate M.Tech. Students are required to undertake a comprehensive and research-driven dissertation project as part of their academic curriculum. The objective is to ensure students engage with challenging and contemporary topics in their respective domains, while also contributing to the academic and professional community through research publications.

Project Selection and Scope

1. Continuation from Dissertation Phase-I:

Students **must continue the topic selected during Dissertation Phase-I**. Any modifications or refinements to the scope must be done in consultation with the assigned Supervisor/Guide.

2. Thorough Study and Execution:

The dissertation work should include:

- Detailed design calculations
- Analytical modeling and development
- Prototyping or implementation of models
- Validation through simulations, experiments, or case studies as applicable

DEPARTMENT OF COMPUTER ENGINEERING

3. Research Publication Requirement:

As part of **Dissertation Phase-II**, students **must prepare at least one review research paper** and **submit it** in a reputed **SCI / Scopus / UGC CARE-listed journal** under the supervision of their Guide.

Dissertation Supervision and Presentation

4. Project Supervision:

Each student will be assigned a Supervisor/Guide who will mentor and evaluate the progress throughout the project duration. Regular interaction with the Guide is mandatory to ensure focused progress and direction.

5. Research Gap Identification:

Students are required to:

- Analyze and review relevant research papers
- Identify gaps in existing studies
- Formulate a well-defined problem statement in consultation with their Guide

6. Progress Review Presentations:

Students must deliver **four internal progress presentations** during the dissertation period. These presentations should cover:

- Literature survey and problem formulation
- Design methodology and analytical work
- Implementation and results
- Validation and conclusions

All stages will be **evaluated by an internal panel in the presence of the Guide**, and formal feedback will be recorded.

7. Final Dissertation Report Submission:

Students must submit a comprehensive **Dissertation Phase-II report** that includes:

- Introduction to the problem
- Detailed literature survey
- Identified research gaps
- Objectives, Methodology, design calculations
- Development, Testing and Validation
- The report must follow the formatting and structural guidelines provided as below.

INSTRUCTIONS FOR DISSERTATION PHASE - II REPORT WRITING

It is important that the procedures listed below be carefully followed by all the students of M.Tech. (Computer Engineering).

1. Prepare **Three Hard Bound Copies** of your manuscript.
2. Limit your Dissertation report to 50 – 60 pages (preferably)
3. The footer must include the following:
 - Institute Name, M.Tech. (Computer) (Data Sciences) Times New Roman 10 pt. and centrally aligned.
4. Page number as second line of footer, Times New Roman 10 Pt, centrally aligned.
5. Print the manuscript using

DEPARTMENT OF COMPUTER ENGINEERING

- a. Letter quality computer printing.
- b. The main part of manuscript should be Times New Roman 12 pt. with alignment - justified.
- c. Use 1.5 line spacing.
- d. Entire report shall be of 5- 7 chapters.
6. Use the paper size **8.5" × 11"** or **A4 (210 × 197 mm)**. Please follow the margins given below.

Margin Location	Paper 8.5" × 11"	Paper A4 (210 × 197 mm)
Top	1"	25.4 mm
Left	1.5"	37 mm
Bottom	1.25"	32 mm
Right	1"	25.4 mm

7. All paragraphs will be 1.5 line spaced with a one blank line between each paragraph. Each paragraph will begin without any indentation.
8. Section titles should be bold with 14 pt typed in all capital letters and should be left aligned.
9. Sub-Section headings should be aligning at the left with 12 pt, bold and Title Case (the first letter of each word is to be capitalized).
10. Illustrations (charts, drawings, photographs, figures) are to be in the text. Use only illustrations really pertinent to the text. Illustrations must be sharp, clear, **black and white**. **Illustrations downloaded from internet are not acceptable.**
 - a. Illustrations should not be more than **two** per page. One could be ideal
 - b. Figure No. and Title at bottom with **12 pt**
 - c. Legends below the title in **10 pt**
 - d. Leave proper margin in all sides
 - e. Illustrations as far as possible should not be Xeroxed.
11. **Photographs** if any should be of glossy prints
12. Please use **SI** system of units. If students would like to add the equivalent in inch-pound (British) units, they must be stated in parenthesis after the **SI** units. In case the final result comes out in any other units (say due to empirical formula etc.) convert the unit to **SI** unit.
13. Please **number the pages** on the front side, centrally below the footer
14. **References** should be either in order as they appear in the thesis or in alphabetical order by last name of first author
15. **Symbols and notations** if any should be included in nomenclature section only
16. Following will be the order of report
 - i. **Cover page** and **Front page** as per the specimen on separate sheet
 - ii. **Certificate** from the Institute as per the specimen on separate sheet
 - iii. **Acknowledgement**
 - iv. **List of Figures**
 - v. **List of Tables**
 - vi. **Nomenclature**
 - vii. **Contents**

DEPARTMENT OF COMPUTER ENGINEERING

viii. **Abstract** (A brief abstract of the report not more than **150 words**. The heading of abstract i.e. word “Abstract” should be **bold**, **Times New Roman**, **12 pt** and should be typed at the **centre**. The contents of abstract should be typed on new line without space between heading and contents. Try to include one or two sentences each on **motive**, **method**, **key-results** and **conclusions** in the Abstract)

1. Introduction (2-3 pages) (TNR – 14 Bold)

1.1 Problem statement (TNR – 12)

1.2 Objectives

1.3 Scope

1.4 Methodology

1.5 Organization of Dissertation

2. Literature Review (20-30 pages)

Discuss the work done so far by researchers in the domain area and their significant conclusions. No derivations, figures, tables, graphs are expected.

3. This chapter shall be based on your own simulation work (Analytical/ Numerical/FEM/CFD) (15- 20 pages)

4. Experimental Validation - This chapter shall be based on your own experimental work (15-20 pages)

5. Concluding Remarks and Scope for the Future Work (2-3 pages)

References

ANNEXURE (if any)

(Put all mathematical derivations, Simulation program as Annexure)

17. All section headings and subheadings should be numbered. For sections use numbers **1, 2, 3,** and for subheadings **1.1, 1.2,** etc and section subheadings **2.1.1, 2.1.2,** etc.

18. **References** should be given in the body of the text and well spread. No verbatim copy or excessive text from only one or two references. If **figures** and **tables** are taken from any reference then indicate source of it. Please follow the following procedure for references

Reference Books:

Collier, G. J. and Thome, J. R., Convective boiling and condensation, 3rd ed., Oxford University Press, UK, 1996, pp. 110 – 112.

Papers from Journal or Transactions:

1. Jung, D. S. and Radermacher, R., Transport properties and surface tension of pure and mixed refrigerants, *ASHRAE Trans*, 1991, 97 (1), pp. 90 – 98.

Papers from Conference Proceedings

1. Colbourne, D. and Ritter, T. J., *Quantitative assessment of flammable refrigerants in room air conditioners*, Proc. of the Sixteenth International Compressor Engineering Conference and Ninth International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, Indiana, USA, 2002, pp. 34 – 40.

Reports, Handbooks etc.

1. United Nations Environmental Programme, Report of the Refrigeration, Air Conditioning and Heat Pumps, Technical Option Committee, 2002, Assessment - 2002.

Patent :- Patent no, Country (in parenthesis)

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Mechanical – Robotics and Automation)	Semester: III								
Course: Advanced Data Science Laboratory	Code: CODS304								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

Teaching Scheme (hrs/week)**Evaluation Scheme (Marks)****Prerequisites:**

Data Structures, Probability & Statistics, and Machine Learning fundamentals.

Python and data analysis tools (NumPy/Pandas/Scikit-learn).

Course Objectives:

1. To implement advanced data analytics and machine learning algorithms.
2. To analyze large-scale, high-dimensional, and complex datasets.
3. To apply research-level techniques for optimization and model evaluation.
4. To build scalable, explainable, and ethical data science solutions.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Perform advanced data preprocessing, feature engineering, and exploratory data analysis on complex datasets.
CO2	Design, implement, and evaluate advanced machine learning and ensemble models for real-world problems.
CO3	Apply deep learning techniques for structured, unstructured, and time-series data analysis.
CO4	Implement explainable and ethical AI techniques to interpret model decisions and detect bias.
CO5	Optimize model performance using hyperparameter tuning, AutoML, and scalable computing frameworks.
CO6	Develop end-to-end data science solutions and present experimental results through reports and viva-voce.

Course Contents:**List of Program**

1. Design an automated data preprocessing pipeline to handle missing data, anomalies, feature scaling, and generate advanced EDA reports for a real-world dataset.
2. Develop domain-specific features and apply embedded feature selection methods to improve predictive accuracy on a high-dimensional dataset
3. Implement ensemble learning methods and evaluate their effectiveness in improving classification accuracy over single models.
4. Build an explainable machine learning model and interpret predictions using feature importance and local explanation techniques.
5. Apply advanced clustering algorithms to discover hidden patterns and evaluate cluster quality using internal and external validation measures.
6. Design and train deep neural networks for structured/tabular data and compare performance with traditional ML models.
7. Develop time-series forecasting models using recurrent or attention-based neural networks and evaluate forecasting accuracy.

DEPARTMENT OF COMPUTER ENGINEERING

8. Implement transformer-based models for text classification or sentiment analysis using pre-trained language models.
9. Apply transfer learning techniques for image classification or object detection and analyze performance improvement over training from scratch.
10. Apply advanced hyperparameter tuning and AutoML techniques to automatically identify the best-performing model for a given dataset.
11. Implement scalable machine learning algorithms on large datasets using distributed computing frameworks.
12. Analyze machine learning models for bias and fairness and propose mitigation strategies for ethical decision-making.

Text Books:

1. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" — Aurélien Géron
Practical implementations and project-style labs.
2. "Python for Data Analysis" — Wes McKinney
Strong focus on real data tasks with Pandas & NumPy.
3. "Data Science from Scratch" — Joel Grus
Good for understanding algorithms by coding them.

Reference Books:

1. "Pattern Recognition and Machine Learning" — Christopher M. Bishop
Theoretical grounding for ML techniques used in labs.
2. "Machine Learning: A Probabilistic Perspective" — Kevin P. Murphy
Reference for advanced models and probabilistic reasoning.
3. "Deep Learning" — Ian Goodfellow, Yoshua Bengio & Aaron Courville
Standard reference for deep learning concepts.

E-Resources:

1. **Kaggle Notebooks** — real datasets + community code
<https://www.kaggle.com>
2. **Google Colab Tutorials** — interactive Python/ML labs
<https://colab.research.google.com>
3. **scikit-learn Documentation & Examples**
<https://scikit-learn.org>
4. **TensorFlow & PyTorch Tutorials** — deep learning practice
<https://www.tensorflow.org/tutorials>
<https://pytorch.org/tutorials>
5. **Coursera / edX Courses (free audit)**
Applied Data Science, ML Engineering, Big Data Analytics

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

SYLLABUS

SEMESTER - IV

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Sciences)	Semester: IV								
Course: Dissertation Phase – III	Code: CODS401								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

-	32	-	16	-	-	150	100	-	250
---	----	---	----	---	---	-----	-----	---	-----

-	32	-	16	-	-	150	100	-	250
---	----	---	----	---	---	-----	-----	---	-----

Prerequisites:

1. Successful completion of Dissertation Phase II (Semester III).
2. Completed courses in Machine Learning, Deep Learning, Big Data Analytics, Research Methodology, and Ethics.
3. Familiarity with data science tools (Python/R, TensorFlow, PyTorch, Tableau, SQL, etc.) and research documentation.

Course Objectives:

1. To provide a structured framework for students to complete and defend their M.Tech dissertation.
2. To enable students to apply advanced data science techniques to solve real-world or research problems.
3. To cultivate the ability to design, implement, and evaluate complex systems or models.
4. To encourage technical writing, research publication, and presentation of findings.
5. To reinforce professional, ethical, and collaborative research practices.
6. To prepare students for doctoral studies or industry-level data science roles.

Course Outcomes:

CO1	Demonstrate research independence.
CO2	Integrate and apply advanced analytical techniques.
CO3	Produce high-quality research documentation.
CO4	Exhibit professional and ethical research behavior
CO5	Communicate research findings effectively

Course Contents:

Sr. no.	Description
1.	<p>Dissertation Refinement and Planning: Review of progress from Dissertation Phase III. Refinement of objectives, scope, and problem statements based on previous feedback. Finalization of system architecture, datasets, and experimental design. Time-bound planning of remaining tasks. Literature review update with recent scholarly references.</p>
2.	<p>System Development and Experimental Design: Implementation of advanced modules or deep learning components. Use of real-time data pipelines, cloud deployment, or large-scale datasets (if applicable). Experimentation using statistical, ML, or DL techniques. Optimization of model performance and computational efficiency.</p>

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

3.	Model Evaluation and Comparative Study: Establishing evaluation metrics: Accuracy, Precision, Recall, F1, RMSE, AUC, etc. Benchmarking against existing systems or related work., Error analysis and interpretation of results., Performing robustness, sensitivity, or scalability tests.
4.	Documentation and Research Publication: Structuring dissertation chapters: Abstract, Introduction, Literature Review, Methodology, Results, Conclusion, and References. Generating figures, tables, and citations using standard templates (IEEE/Elsevier). Preparing research paper based on dissertation findings. Checking plagiarism and originality ($\leq 15\%$). Ensuring ethical data reporting and citation integrity.
5.	Presentation, Defense, and Submission: Preparation for open defense and viva-voce before internal and external examiners. Oral presentation covering problem, methodology, results, and conclusions. Incorporating evaluation feedback into the final report. Submission of hard and soft copies of the dissertation.
6.	Expected Deliverables: Weekly Progress Reports / Logbook signed by guide, Project Code Repository / Dataset Documentation, Research Paper / Conference Submission Proof, Dissertation Report (Soft + Hard Copy) following university format, Plagiarism Report, Final Presentation and Viva-Voce Evaluation Sheet.

Guidelines for PG Dissertation Work:

All postgraduate M.Tech. Students are required to undertake a comprehensive and research-driven dissertation project as part of their academic curriculum. The objective is to ensure students engage with challenging and contemporary topics in their respective domains, while also contributing to the academic and professional community through research publications.

1. Continuation from Dissertation Phase-I and II:

Students **must continue the topic selected during Dissertation Phase-I**. Any modifications or refinements to the scope must be done in consultation with the assigned Supervisor/Guide.

2. Thorough Study and Execution:

The dissertation work should include:

- Detailed design calculations
- Analytical modeling and development
- Prototyping or implementation of models
- Validation through simulations, experiments, or case studies as applicable

3. Research Publication Requirement:

As part of **Dissertation Phase-III**, students **must publish at least one research paper** in a reputed **SCI / Scopus / UGC CARE-listed journal** under the supervision of their Guide.

4. Dissertation Supervision and Presentation:

- Each student will be assigned a Supervisor/Guide who will mentor and evaluate their progress throughout the project, with regular interaction being mandatory to ensure focused development and proper guidance.
- Each student is required to meet their respective guide **at least once a week** and work regularly as per the guide's instructions and feedback.

DEPARTMENT OF COMPUTER ENGINEERING

- Students must deliver **four progress presentations** during the dissertation phase.
- These presentations shall be conducted in front of an **internal panel**, which will be circulated by the **PG Coordinator**.
- **Only after receiving satisfactory remarks in all four progress presentations**, the student will be **eligible to appear for the final dissertation presentation**, which will be conducted by an **external examiner**.
- Timely submission of work, regular interaction with the guide, and adherence to feedback are mandatory for successful completion.

Dissertation Outline

1. Research Gap Identification

Students are required to:

- Analyze and review relevant national and international research papers.
- Identify gaps or limitations in existing studies.
- Formulate a clear and researchable problem statement in consultation with their Guide/Supervisor.

2. Progress Review Presentations

Students must deliver **four internal progress presentations** during the dissertation period, covering the following stages:

1. Literature Survey & Problem Formulation
2. Design Methodology & Analytical Work
3. Implementation & Results
4. Validation & Conclusions

Each stage will be evaluated by an internal review panel in the presence of the Guide, and formal feedback will be documented.

3. Final Dissertation Report Submission

Students are required to submit a comprehensive Phase-II Dissertation Report that includes:

1. Introduction to the research problem
2. Detailed literature survey
3. Identification of research gaps
4. Clearly defined objectives, methodology, and design calculations
5. System development, testing, and validation of results
6. Proper formatting and structure as per the prescribed dissertation guidelines

INSTRUCTIONS FOR DISSERTATION PHASE - III REPORT WRITING

It is important that the procedures listed below be carefully followed by all the students of M.Tech. (Computer Engineering).

1. Prepare **Three Hard Bound Copies** of your manuscript.
2. Limit your Dissertation report to 50 – 60 pages (preferably)
3. The footer must include the following:
 - Institute Name, M.Tech. (Computer) (Data Sciences) Times New Roman 10 pt. and centrally aligned.
4. Page number as second line of footer, Times New Roman 10 Pt, centrally aligned.

DEPARTMENT OF COMPUTER ENGINEERING

5. Print the manuscript using
 - a. Letter quality computer printing.
 - b. The main part of manuscript should be Times New Roman 12 pt. with alignment - justified.
 - c. Use 1.5 line spacing.
 - d. Entire report shall be of 5- 7 chapters.
6. Use the paper size **8.5" × 11"** or **A4 (210 × 197 mm)**. Please follow the margins given below.

Margin Location	Paper 8.5" × 11"	Paper A4 (210 × 197 mm)
Top	1"	25.4 mm
Left	1.5"	37 mm
Bottom	1.25"	32 mm
Right	1"	25.4 mm

7. All paragraphs will be 1.5 line spaced with a one blank line between each paragraph. Each paragraph will begin without any indentation.
8. Section titles should be bold with 14 pt typed in all capital letters and should be left aligned.
9. Sub-Section headings should be aligning at the left with 12 pt, bold and Title Case (the first letter of each word is to be capitalized).
10. Illustrations (charts, drawings, photographs, figures) are to be in the text. Use only illustrations really pertinent to the text. Illustrations must be sharp, clear, **black and white**. **Illustrations downloaded from internet are not acceptable.**
 - a. Illustrations should not be more than **two** per page. One could be ideal
 - b. Figure No. and Title at bottom with **12 pt**
 - c. Legends below the title in **10 pt**
 - d. Leave proper margin in all sides
 - e. Illustrations as far as possible should not be Xeroxed.
11. **Photographs** if any should be of glossy prints
12. Please use **SI** system of units. If students would like to add the equivalent in inch-pound (British) units, they must be stated in parenthesis after the **SI** units. In case the final result comes out in any other units (say due to empirical formula etc.) convert the unit to **SI** unit.
13. Please **number the pages** on the front side, centrally below the footer
14. **References** should be either in order as they appear in the thesis or in alphabetical order by last name of first author
15. **Symbols and notations** if any should be included in nomenclature section only
16. Following will be the order of report
 - i. **Cover page** and **Front page** as per the specimen on separate sheet
 - ii. **Certificate** from the Institute as per the specimen on separate sheet
 - iii. **Acknowledgement**
 - iv. **List of Figures**
 - v. **List of Tables**
 - vi. **Nomenclature**
 - vii. **Contents**

DEPARTMENT OF COMPUTER ENGINEERING

viii. **Abstract** (A brief abstract of the report not more than **150 words**. The heading of abstract i.e. word “Abstract” should be **bold**, **Times New Roman**, **12 pt** and should be typed at the **centre**. The contents of abstract should be typed on new line without space between heading and contents. Try to include one or two sentences each on **motive**, **method**, **key-results** and **conclusions** in the Abstract)

1. Introduction (2-3 pages) (TNR – 14 Bold)

- 1.1 Problem statement (TNR – 12)
- 1.2 Objectives
- 1.3 Scope
- 1.4 Methodology
- 1.5 Organization of Dissertation

2. Literature Review (20-30 pages)

Discuss the work done so far by researchers in the domain area and their significant conclusions. No derivations, figures, tables, graphs are expected.

3. This chapter shall be based on your own simulation work (Analytical/ Numerical/FEM/CFD) (15- 20 pages)

4. Experimental Validation - This chapter shall be based on your own experimental work (15-20 pages)

5. Concluding Remarks and Scope for the Future Work (2-3 pages)

References

ANNEXURE (if any)

(Put all mathematical derivations, Simulation program as Annexure)

17. All section headings and subheadings should be numbered. For sections use numbers **1, 2, 3,** and for subheadings **1.1, 1.2,** etc and section subheadings **2.1.1, 2.1.2,** etc.

18. **References** should be given in the body of the text and well spread. No verbatim copy or excessive text from only one or two references. If **figures** and **tables** are taken from any reference then indicate source of it. Please follow the following procedure for references

Reference Books:

Collier, G. J. and Thome, J. R., Convective boiling and condensation, 3rd ed., Oxford University Press, UK, 1996, pp. 110 – 112.

Papers from Journal or Transactions:

1. Jung, D. S. and Radermacher, R., Transport properties and surface tension of pure and mixed refrigerants, *ASHRAE Trans*, 1991, 97 (1), pp. 90 – 98.

Papers from Conference Proceedings

1. Colbourne, D. and Ritter, T. J., *Quantitative assessment of flammable refrigerants in room air conditioners*, Proc. of the Sixteenth International Compressor Engineering Conference and Ninth International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, Indiana, USA, 2002, pp. 34 – 40.

Reports, Handbooks etc.

1. United Nations Environmental Programme, Report of the Refrigeration, Air Conditioning and Heat Pumps, Technical Option Committee, 2002, Assessment - 2002.

Patent :- Patent no, Country (in parenthesis)

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Sciences)	Semester: IV								
Course: Massive Open Online Course (MOOCs)	Code: CODS402								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

04	-	-	04	-	-	100	-	-	100
----	---	---	----	---	---	-----	---	---	-----

Prerequisites:

Basic math, programming, or subject-specific foundational knowledge.

Course Objectives:

1. To gain a solid understanding of key ideas and skills in the field of Computer Engineering in Data Science, starting from the basics and moving to more advanced topics.
2. To learn at own pace with engaging videos, quizzes, and hands-on activities that keep things interesting.
3. To develop real-world abilities that you can apply in your career, studies, or daily life.
4. To engage with a global community of learners to share ideas and support each other.
5. To build confidence in understanding and be prepared for new opportunities ahead.

Course Outcomes: At the end of the course, the student will be able to -

CO1	Apply foundational knowledge by engaging with expert faculty to strengthen core concepts.
CO2	Investigate new and relevant areas within the discipline to broaden their understanding.
CO3	Demonstrate self-directed learning by planning and managing their own study activities.
CO4	Apply critical thinking skills to solve complex problems in engineering, science, and the humanities.
CO5	Communicate ideas clearly and effectively through interaction with peers and instructors.

Course Contents:**Description**

A Massive Open Online Course (MOOC) is an online course aimed at unlimited participation and open access via the web. In addition to traditional course materials, such as filmed lectures, readings, and problem sets, many MOOCs provide interactive courses with user forums to support community interactions among students, professors, and teaching assistants, as well as immediate feedback to quick quizzes and assignments.

APPLICATIONS OF MOOCS • Professional development • Skill development • Fostering soft skills, inculcating research etc. • Development of knowledge.

Student need to select any one topic for MOOC courses other than the topic selected in previous semester.

NPTEL (SWAYAM Courses)

National Programme on Technology Enhanced Learning (NPTEL) is a project of MHRD created to provide quality education to students and knowledge seekers anywhere in the world from faculty in top

DEPARTMENT OF COMPUTER ENGINEERING

ranking institutions like IITs and IISc for free. It provides web and video courses across 23 disciplines as certification courses.

Some notable MOOCs providers :

1. SWAYAM Courseware : <https://swayam.gov.in/>
2. MIT Opencourseware : <https://ocw.mit.edu/index.htm>
3. Stanford ONLINE : <http://online.stanford.edu/>
4. Coursera : <https://www.coursera.org/>
5. IIT BombayX : <https://www.iitbombayx.in/>
6. Khanacademy : <https://www.khanacademy.org/>
7. Udacity : <https://in.udacity.com/>
8. edx : <https://www.edx.org/>
9. Swayam : <https://swayam.gov.in/>
10. mooKIT : <https://www.mookit.in/>
11. Spoken-tutorial : <https://spoken-tutorial.org/>
12. Open Classroom : <https://openclassrooms.com>

Institute Guideline for online MOOC Course-

1. MOOC Course registration / approval

Student will register for MOOC Course in consultation with Mentor / Guide / Supervisor allotted from the Institute. The topic and concerned course should be approved by Programme Coordinator / Head of Department.

2. Course Progress Monitoring/Review

Student will submit the periodic progress to Mentor / Guide / Supervisor and Programme Coordinator / Head of Department. Mentor / Guide / Supervisor and Programme Coordinator will conduct the review as per need of the course requirement (if required)

3. Evaluation and Grading

Mentor / Guide / Supervisor and Programme Coordinator will verify the certificate of completion of the course and allocate equivalent score and grade based on grade / score mentioned in the certificate. If certificate does not reflect any grade / score, under such situation Mentor / Guide / Supervisor and Programme Coordinator will evaluate the student by conducting appropriate examination (Theory / Practical / Seminar).

4. Reporting of Grade / Score to Examination Department

Mentor / Guide / Supervisor and Programme Coordinator will submit the evaluation report along with supporting document to examination Department.

DEPARTMENT OF COMPUTER ENGINEERING

Program: M. Tech. (Computer – Data Sciences)	Semester: IV								
Course: Internship*	Code: CODS402								
Teaching Scheme (hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total

-	04	-	04	-	-	100	-	-	100
---	----	---	----	---	---	-----	---	---	-----

Preamble:

Internships serve as vital educational and career development experiences, offering practical exposure in a specific field. Employers seek individuals who possess the necessary skills and an understanding of industry environments, practices, and cultures. This internship is designed as a structured, short-term, supervised training program, often centered on specific tasks or projects with clear timelines. The primary goal is to immerse technical students in an industrial setting, providing experiences that cannot be replicated in the classroom. This exposure aims to develop competent professionals who understand the social, economic, and administrative factors influencing the operations of industrial organizations.

Course Objectives:

1. To expose students to real-world industrial environments
2. To develop the ability to apply technical knowledge
3. To foster professional skills and industry readiness

Course Outcomes: At the end of the course, the student will be able to -

CO1	Gain exposure to industry practices and understand how academic concepts are applied in professional settings.
CO2	Develop and demonstrate effective communication and teamwork skills within a work environment.
CO3	Improve your problem-solving and time management skills by working in real-world industry settings.

Course Contents:**Description****Internship Requirements****1. Internship Duration:**

The students should undergo an internship in Semester-III/IV during academic period for the duration of 8 to 12 weeks. Internships completed during this period will be considered for the assessment of Term Work (TW).

2. Internship Opportunities:

Students can explore various opportunities for internships at:

- a. Industries
- b. Research labs or organizations
- c. Collegiate clubs
- d. In-house research projects

3. Support and Assistance:

Students can seek assistance for securing internships from:

- a. The Training and Placement cell

DEPARTMENT OF COMPUTER ENGINEERING

- b. Department or institute faculty members
- c. Personal contacts
- d. Directly connecting with industries or organizations

4. Request Letter:

Once an industry, research organization, or collegiate club is identified, students must obtain a request letter from the concerned department or placement office. This letter, in the standard format must be duly signed by the authority, should be addressed to the HR manager or relevant authority.

5. Confirmation Letter:

Students must submit the confirmation letter from the industry, research organization, or collegiate club to the PG Coordinator and the Head of Department (HOD)

6. Joining Report:

Upon commencing the internship, students must submit the joining report, joining letter, or a copy of the confirmation email to the PG Coordinator and the HOD office.

7. Faculty Mentor/ Guide:

A faculty member will be assigned as a mentor to an individual student. The mentor will be responsible for monitoring, evaluating, and assessing student internship activities. The faculty mentor is also required to visit the internship location and submit formal feedback to the PG Coordinator.

8. Progress Report Presentation:

Students must submit four progress report presentations as per the departmental schedule to their faculty Guide and internal panel members. The final internship report must be submitted to the PG Coordinator, duly signed by the Guide and Head of Department (HOD), and submitted to the department office.

9. Evaluation Report:

After the completion of the internship, the mentor, along with the assessment panel members, should submit the evaluation report of the students to the department office and PG Coordinator.

10. Internship Certificate:

Students must receive the Internship Certificate from the industry and submit it to the PG Coordinator and department office.

11. Presentation and Assessment:

Students are required to give a presentation upon successful completion of their internship, along with four progress presentations on their internship work as part of the curriculum. The internship diary and final report will also be verified and assessed.