

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

Curriculum Structure and Syllabus of

F.Y. B. Tech. – Computer Engineering

(With effect from - Academic Year 2025 - 26)

VISION OF THE INSTITUTE

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION OF THE INSTITUTE

- To achieve academic excellence through innovative teaching and learning process.
 - To imbibe the research culture for addressing industry and societal needs.
 - To inculcate social attitude through community engagement initiatives.
 - To provide conducive environment for building the entrepreneurial skills.

DEPARTMENT OF COMPUTER ENGINEERING

VISION:

To emerge as a department of repute in Computer Engineering through innovative teaching, research, social responsibility, and entrepreneurial skills, developing responsible IT professionals.

MISSION:

M1: To provide in depth technical education and hands-on experiences in Computer engineering using modern tools and technologies.

M2: To endeavor innovative research culture to fulfill the needs of Industry and Society.

M3: To instill in students a deep sense of social responsibility.

M4: To strengthen collaboration between industry and academia, fostering the development of entrepreneurial skills among the students.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

PEO1: Graduates will apply knowledge of computer engineering to solve complex engineering problems, propose algorithmic solutions, thus establishing themselves as successful IT professional.

PEO2: Graduates will exhibit leadership qualities and innovative thinking, contributing to the development of cutting-edge solutions and career advancements in the field of computer engineering through research, collaborative teamwork and entrepreneurial initiatives.

PEO3: Graduates will maintain ethics, meet societal duties, and pursue life-long learning to stay updated and contribute meaningfully to their field and the society.

PROGRAM OUTCOMES (POs):

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

DEPARTMENT OF COMPUTER ENGINEERING

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

PSO1: Professional Skills- The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexities.

PSO2: Problem-Solving Skills- The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.

PSO3: Successful Career and Entrepreneurship- The ability to employ modern computer languages, environments and platforms in creating innovative career paths to be an entrepreneur and to have a zest for higher studies.

DEPARTMENT OF COMPUTER ENGINEERING**LIST OF ABBREVIATIONS**

Abbreviation	Description
BSC	Basic Science Course
ESC	Engineering Science Course
PCC	Programme Core Course
PEC	Programme Elective Course
MDM	Multidisciplinary Minor
OE	Open Elective - Other than a particular program
VSEC	Vocational and Skill Enhancement Course
AEC	Ability Enhancement Course
ENTR	Entrepreneurship
EC	Economics
MC	Management Courses
IKS	Indian Knowledge System
VEC	Value Education Courses
RM	Research Methodology
CEP	Community Engagement Project
FP	Field Project
PROJ	Project
INT	Internship
OJT	On Job Training
CC	Co-curricular Courses
HSSM	Humanities Social Science and Management
ELC	Experiential Learning Course
B. Tech	Bachelor of Technology
L	Lecture
P	Practical
T	Tutorial
H	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Evaluation
TH	Theory
Tut	Tutorial
TW	Term Work
OR	Oral
PR	Practical

DEPARTMENT OF COMPUTER ENGINEERING

First Year B. Tech. – Computer Engineering: Semester - I


Course Code	Course Type	Course Name	Teaching Scheme (hrs/Week)							Evaluation Scheme					
			L	P	T	H	TH	PR/Tut	Total	CIE	ETE	TW	PR	OR	Total
25COBS101	BSC	Engineering Mathematics - I	3	-	-	3	3	-	3	40	60	-	-	-	100
25COBS102	BSC	Engineering Chemistry	2	2	-	4	2	1	3	40	60	25	-	-	125
25COES101	ESC	Basic Electrical and Electronics Engineering	3	2	-	5	3	1	4	40	60	50	-	-	150
25COES102	ESC	Problem Solving and Logic Building	2	2	-	4	2	1	3	40	60	50	-	-	150
25COVS101	VSEC	Web Application Development	-	4	-	4	-	2	2	-	-	50	-	-	50
25COCC101	CC	Professional Development - I	-	4	-	4	-	2	2	-	-	50	-	-	50
25COCC102	CC	Liberal Learning – I*	-	2	-	2	-	1	1	-	-	25	-	-	25
25COIK101	HSSM-IKS	Indian Knowledge System & Financial Literacy	2	-	-	2	2	-	2	-	-	50	-	-	50
Total			12	16	-	28	12	8	20	160	240	300	-	-	700

* Liberal Learning – I: Choose any one from the following:

Sr. No.	Course Code	Module	Sr. No.	Course Code	Module
1.	25COCC102A	Guitar	6.	25COCC102F	Basketball
2.	25COCC102B	Singing	7.	25COCC102G	Cricket
3.	25COCC102C	Cinematography	8.	25COCC102H	Rifle and Pistol Shooting
4.	25COCC102D	Dance	9.	25COCC102I	Volleyball
5.	25COCC102E	Synthesizer	10.	25COCC102J	Football

BoS Chairman

Director

ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

DEPARTMENT OF COMPUTER ENGINEERING

First Year B. Tech. – Computer Engineering: Semester – II

Course Code	Course Type	Course Name	Teaching Scheme(hrs/Week)							Evaluation Scheme					
			L	P	T	H	CR			CIE	ETE	TW	PR	OR	Total
							TH	PR/Tut	Total						
25COBS203	BSC	Engineering Mathematics - II	3	-	-	3	3	-	3	40	60	-	-	-	100
25COBS204	BSC	Engineering Physics	2	2	-	4	2	1	3	40	60	25	-	-	125
25COES203	ESC	Digital Systems Design and Architecture	2	2	-	4	2	1	3	40	60	25	-	-	125
25COES204	ESC	Foundations of C++ Programming	3	-	-	3	3	-	3	40	60	-	-	-	100
25COPC201	PCC	Fundamentals of Computer Systems and Networking	2	2	-	4	2	1	3	40	60	25	-	-	125
25COVS202	VSEC	C++ Programming Laboratory	-	4	-	4	-	2	2			-	50	-	50
25COCC203	CC	Professional Development - II	-	4	-	4	-	2	2			-	25	-	25
25COCC204	CC	Liberal Learning - II	-	2	-	2	-	1	1			-	25	-	25
25COAE201	HSSM - AEC	IT Proficiency	-	4	-	4	-	2	2			-	25	-	25
Total			12	20	-	32	12	10	22	200	300	200	-	-	700

* Liberal Learning – II: Choose any one from the following:

Sr. No.	Course Code	Module	Sr. No.	Course Code	Module
1.	25COCC204A	Guitar	6.	25COCC204F	Basketball
2.	25COCC204B	Singing	7.	25COCC204G	Cricket
3.	25COCC204C	Cinematography	8.	25COCC204H	Rifle and Pistol Shooting
4.	25COCC204D	Dance	9.	25COCC204I	Volleyball
5.	25COCC204E	Synthesizer	10.	25COCC204J	Football

BoS Chairman

Director

ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

DEPARTMENT OF COMPUTER ENGINEERING**INDEX**

Sr. No.	Course Code	Course Name	Page No.
First Year B. Tech. Computer Engineering: Semester - I			
1	25COBS101	Engineering Mathematics - I	8
2	25COBS102	Engineering Chemistry	10
3	25COES101	Basic Electrical and Electronics Engineering	13
4	25COES102	Problem Solving and Logic Building	16
5	25COVS101	Web Application Development	19
6	25COCC101	Professional Development - I	23
7	25COCC102	Liberal Learning - I	24-33
8	25COIK101	Indian Knowledge System & Financial Literacy	34
First Year B. Tech. Computer Engineering: Semester – II			
9	25COBS203	Engineering Mathematics - II	37
10	25COBS204	Engineering Physics	39
11	25COES203	Digital Systems Design and Architecture	42
12	25COES204	Foundations of C++ Programming	45
13	25COPC201	Fundamentals of Computer Systems and Networking	47
14	25COVS202	C++ Programming Laboratory	51
15	25COCC203	Professional Development - IIS	54
16	25COCC204	Liberal Learning - II	55-64
17	25COAE201	IT Proficiency	65

**Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41**

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

**SYLLABUS
SEMESTER - I**

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Engineering Mathematics - I	Code: 25COBS101								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture 03	Practical -	Tutorial -	Credit 03	CIE 40	ETE 60	TW -	OR -	PR -	Total 100

Prerequisites:

Basic concept of Differentiation, Integration, Maxima and Minima, Matrices and Determinants.

Course Objectives:

1. To acquaint the students to rank of matrix, solution of simultaneous equations, Eigen values and Eigen vectors.
2. To acquire techniques of the expansion of functions about any point and to evaluate the indeterminate forms of limits.
3. To make students familiar with multivariable differentiation and its applications.
4. To introduce to student awareness of concept of Fourier series.

Course Outcomes: After completion of this course, students will be able to -

CO1	Use of matrix method for solving system of simultaneous linear equations.
CO2	Find eigen values and eigen vectors of the matrix.
CO3	Describe the power series expansion of a given function and evaluate limits.
CO4	Understand the basic concepts of partial derivatives.
CO5	Evaluate partial derivatives to estimate maxima and minima of function of multiple variables.
CO6	Determine the Fourier series representation and harmonic analysis for design.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	System of Linear Equations: Rank of a matrix, System of linear equations, Linear dependence and independence of vectors, Linear and orthogonal transformations, Application to problems in engineering.	7
2.	Eigen Values and Eigen Vectors, Diagonalization: Eigen values and Eigen vectors, Cayley-Hamilton theorem, Diagonalization of a matrix, Reduction of quadratic forms to canonical form by linear and orthogonal transformations.	7
3.	Differential Calculus: Rolle's theorem, Mean value theorems, Taylor's series and Maclaurin's series, Expansion of functions using standard expansions, Indeterminate forms.	7
4.	Partial Differentiation: Partial derivatives of first and higher orders, Euler's theorem on homogeneous functions, Partial derivative of composite functions, Total derivative and Implicit differentiation	7
5.	Applications of Partial Differentiation: Jacobians and their applications, Errors and Approximations. Maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers.	7
6.	Fourier Series: Definition, Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmonic analysis.	7
TOTAL		42

DEPARTMENT OF COMPUTER ENGINEERING

Text Books:

1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill
2. B. S. Grewal , "Higher Engineering Mathematics", Khanna Publication
3. Howard Anton & Chris Rorres , "Elementary Linear Algebra" , John Wiley & sons.
4. Seymour Lipschutz, Marc Lipson , "Schaum's outlines of Linear Algebra", 6th edition McGraw-Hill Education (India) Private Limited, New Delhi.

Reference Books:

1. Erwin Kreyszig , "Advanced Engineering Mathematics" , Wiley Eastern Ltd.
2. M. D. Greenberg , "Advanced Engineering Mathematics" , Pearson Education.
3. Peter V. O'Neil , "Advanced Engineering Mathematics" , Thomson Learning.
4. P. N. Wartikar and J. N. Wartikar , "Applied Mathematics (Vol. I & Vol. II)" , Vidyarthi Griha Prakashan, Pune.
5. Ron Larson and David C. Falvo, "Elementary Linear Algebra" ,Houghton Mifflin Harcourt Publishing Company

E-Resources:

1. A NPTEL Course on "Engineering Mathematics-I" IIT Khargpur -
<https://www.youtube.com/watch?v=4QFsiXfgbzM&list=PLbRMhDVUMngeVrxtbBz-n8HvP8KAWBpI5>
2. Paathshala Pandit , "Rank of Matrix | Vector Space | Engineering Mathematics" -
https://www.youtube.com/watch?v=jHU3yasfpKw&list=PLU4tR1orU5wWPpemhfdG0Yc4zNiI_CSMVO&index=1
3. Eigenvalues and Eigenvectors | Properties and Important Result | Matrices
<https://www.youtube.com/watch?v=1wjXVdwzgX8>
4. Taylor Series | Numericals | Maths 1 | B.Tech 1st year | Engineering | BSc -
<https://www.youtube.com/watch?v=0bHky1ocA1Y>
5. Partial Differentiation Example And Solution | Multivariable Calculus -
<https://www.youtube.com/watch?v=eTp5wq-cSXY&list=PLU6SqdYcYsfLuIJdHwY92aGBg5-uRHBOB&index=1>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Engineering Chemistry	Code: 25COBS102								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture 02	Practical 02	Tutorial -	Credit 03	CIE 40	ETE 60	TW 25	OR -	PR -	Total 125

Prerequisites:

Basic knowledge of volumetric analysis, structure property relationship, classification and properties of polymers, electromagnetic radiation, electrochemical series.

Course Objectives:

1. To familiarize the students with the basic phenomenon/concepts of chemistry and its applications in various fields of Engineering.
2. To impart knowledge of technologies involved in water analysis to improve water quality.
3. To learn significance science of corrosion and preventive methods used for minimizing corrosion.
4. To understand structure, properties and applications of speciality polymers and nanomaterials.

Course Outcomes: After completion of this course, student will be able to -

CO1	Analyze water softening parameters.
CO2	Utilize different analytical methods for analysis of various chemical compounds.
CO3	Understand the mechanism of destruction of metals (corrosion) and effective preventive measures.
CO4	Explore the knowledge of advanced engineering materials for various engineering applications.
CO5	Analyze fuel and suggest use of alternative fuels.
CO6	Familiarize with classification, properties and applications of nanomaterials.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Water Technology: Introduction, Chemical Analysis of Water- Hardness; Temporary and Permanent, Alkalinity (Hydroxide, Carbonate and Bicarbonate), Softening Methods: Zeolite and Demineralization Process, Water Purification: Reverse Osmosis. Simple Numerical on Hardness Determination and Alkalinity Calculation.	5
2.	Instrumental Methods of Analysis: Types of analysis: Quantitative and Qualitative analysis Introduction, Instrumentation and Applications of following methods: Colorimetry, pHmetry (Titration of Strong acid versus Strong base), Conductometry (Titration of Strong acid versus Strong base)	5
3.	Corrosion Science: Introduction, Types of Corrosion-Dry and Wet corrosion, Wet Corrosion Mechanism: Hydrogen Evolution and Oxygen Absorption, Factors affecting rate	4

DEPARTMENT OF COMPUTER ENGINEERING

	of corrosion. Methods of prevention of corrosion: Cathodic Protection (Sacrificial Anode), Anodic Protection (Anodizing), Methods to apply Metallic Coatings-Hot dipping, Electroplating.	
4.	Engineering Polymers: Polymers: Introduction, Definition of Polymer, Monomer and Functionality of monomers Speciality Polymers: Introduction, Preparation, Properties and Applications of the following polymers: 1. Engineering Thermoplastic: Polycarbonate 2. Conducting Polymer: Polyacetylene Polymer Composites: Introduction, Constituents of composite, Advantages over conventional materials, Applications, Fiber Reinforced Plastic (FRP)-Glass reinforced and Carbon reinforced.	5
5.	Fuels and Combustion: Introduction, Calorific value - Definition, Gross and Net calorific value, Determination of Calorific value: Principle, Construction and Working of Bomb Calorimeter (Simple Numerical), Solid fuel: Coal: Analysis of Coal-Proximate (Simple Numerical). Alternate fuels: Biodiesel and Power alcohol. Hydrogen as future fuel: Production, Advantages, Storage and Applications in Hydrogen fuel cell.	5
6.	Nanomaterials: Introduction, Classification of Nanomaterials Based on Dimensions, Nanoscale materials: Structure, Properties and Applications of Graphene and Quantum dots (semiconductor nanoparticles), Importance of Nanotechnology in engineering applications.	4
TOTAL		28

List of Experiments:**A. Lab Experiments (Any Seven)**

1. Determination of hardness of water by EDTA method.
2. Determination of alkalinity of water.
3. Determination of strength of strong acid using pH meter.
4. Determination of maximum wavelength of absorption of $\text{CuSO}_4/\text{FeSO}_4/\text{KMnO}_4$, verify Beer's law and find unknown concentration of given sample.
5. Titration of a mixture of strong acid with strong base using Conductometer.
6. Preparation of phenol-formaldehyde/urea-formaldehyde resin.
7. Proximate analysis of coal.
8. Coating of copper or zinc on iron plate using electroplating.
9. Determination of the molecular weight of a polymer by using Ostwald's Viscometer.

B. Demonstration (virtual) (Any One)

10. Demonstration of effect of environmental conditions on metal by weight loss method.
11. Synthesis of oxide nanoparticles.

DEPARTMENT OF COMPUTER ENGINEERING

Text Books:

1. O.G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd.
2. Dara S. S., Umare S. A., "Textbook of Engineering Chemistry", 12th Ed, S. Chand and Company Ltd.
3. Jain and Jain, "Engineering Chemistry", 16th Ed, DhanpatRai and Co. (Pvt.) Ltd., Delhi.

Reference Books:

1. G. R. Chatwal & S. K. Anand, "Instrumental Methods of Chemical Analysis", Himalaya Publishing House.
2. Dr. Sunita Rattan; A Textbook of Engineering Chemistry; 3rd Ed, S. K. Kataria & Sons, New Delhi
3. V. R. Gowarikar, N. V. Viswanathan, Jayadev Sreedhar, "Polymer Science", Wiley Eastern Limited.
4. Billmeyer F. W., "Textbook of polymer science", John Wiley and Sons.
5. B. Sivasankar, "Engineering Chemistry", Tata McGraw-Hill Education Publishing company Limited.
6. G. L. Hornyak, J. J. Moone, H. F. Tihhale, J. Dutta "Fundamentals of Nanotechnology", CRC press.

E-Resources:**MOOC / NPTEL/YouTube Links:**

1. NPTEL Course on Corrosion, IISc Bangalore : <http://nptel.ac.in/courses/113108051/>
2. NPTEL Course on Polymer, IIT Kharagpur: <http://nptel.ac.in/courses/104105039/>,
<http://nptel.ac.in/courses/104103071/40>
3. NPTEL Course on Water Technology, IIT Kanpur: <http://nptel.ac.in/courses/105104102/>
4. NPTEL Course on UV-Visible Spectroscopy: <http://nptel.ac.in/courses/102103044/4>
5. NPTEL Course on Energy Sources: <http://nptel.ac.in/courses/103105110/4>
6. NPTEL Course on "Engineering Chemistry-I", <https://nptel.ac.in/courses/122/106/122106028/>
7. NPTEL Course on "Fundamentals of Spectroscopy", NCL, IISER Pune
<https://nptel.ac.in/courses/104/106/104106122/>

Virtual Labs:

1. PICT Pune: <http://chemistryvl.pict.edu/#/>
2. NITK Surathkal: Hardness of water: [https://ee1-nitk.vlabs.ac.in/exp/determination-of-hardness/simulation.html#:](https://ee1-nitk.vlabs.ac.in/exp/determination-of-hardness/simulation.html#/)
3. NITK Surathkal: Alkalinity of water: <https://ee1-nitk.vlabs.ac.in/exp/determination-of-alkalinity/simulation.html>
4. IIT Hyderabad: Colorimeter, verification of Beer's law, <https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation.html>
5. IIT Kanpur: Preparation of phenol-formaldehyde resin, <http://ebootathon.com/labs/beta/chemistry/EngineeringChemistryLab/exp1/simulation.html>
6. Amrita University: Determination of viscosity average molecular weight polymer, https://pcv-au.vlabs.ac.in/physicalchemistry/Determination_of_ViscosityAverageMolecularWeightofPolymer/

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Basic Electrical and Electronics Engineering	Code: 25COES101								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	02	-	04	40	60	50	-	-	150

Prerequisites:

Basic Mathematics, Basic Knowledge of Computer Hardware

Course Objectives:

1. To understand fundamental electrical quantities and basic DC circuit analysis techniques and their application in real-world and computer systems.
2. To comprehend AC circuit fundamentals and analyze power in AC circuits, including its role in power supplies for computer systems.
3. To explore the working principles of electrical machines and their efficient use in minimizing power consumption in industrial and computer systems.
4. To understand the basic principles of semiconductor materials and diodes, and their applications in power regulation for electronic devices.
5. To study the working principles and applications of transistors and amplifiers in switching and amplification circuits for computing devices.
6. To gain knowledge of digital logic circuits, number systems, and Boolean algebra, with applications in digital data processing and computer systems.

Course Outcomes: After completion of this course, student shall be able to

CO1	Understand basic circuit laws to analyze simple DC circuits used in computing hardware.
CO2	Analyze AC circuits and understand their significance in powering computing systems.
CO3	Understand the function of transformers and electrical machines, especially their roles in power distribution for computing systems
CO4	Understand the basic semiconductor devices used in power regulation and protection within computer systems.
CO5	Gain knowledge of transistor-based devices and their use in digital switching, amplification, and signal processing in computers.
CO6	Understand the fundamental building blocks of digital systems, essential for understanding the functioning of modern computers and microprocessors.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Basics of DC Circuits and Circuit Analysis: Introduction to Electrical Quantities: Charge, current, voltage, power, and energy. Ohm's Law and Simple Circuit Calculations: Relationship between current, voltage, and resistance. Kirchhoff's Laws: Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL). Basic Circuit Analysis Techniques: Series and parallel resistive circuits, Voltage and current division. Application in Computer Systems: Importance of power supply circuits and basic energy management in computing devices.	7

DEPARTMENT OF COMPUTER ENGINEERING

	Case Study: Analysis of household wiring systems and identifying safety concerns in real-world wiring.	
2.	<p>AC Circuits and Power: AC Fundamentals: Sinusoidal waveforms: amplitude, frequency, and phase. RMS and average values. AC Circuit Components: Impedance in AC circuits (resistors, inductors, and capacitors). Power in AC Circuits: Real power, reactive power, apparent power, and power factor.</p> <p>Electricity Consumption Calculation: Calculation of electricity consumption for households and industries, Power transmission and distribution basics.</p> <p>Application in Computer Systems: Role of AC circuits in computer power supplies and transformers.</p> <p>Case Study: Analysis of electricity bills for homes and small industries, Understanding tariff systems, energy consumption patterns, and energy-saving techniques.</p>	7
3	<p>Electrical Machines and Power Consumption: Basics of Electrical Machines: Transformers, AC motors, DC motors, and their applications. Working Principles: Single-phase and three-phase systems, Transformer efficiency and losses.</p> <p>Energy Meters and Billing: Introduction to energy meters used in billing systems, Energy-saving techniques in industrial and residential settings.</p> <p>Application in Computer Systems: Usage of transformers and motors in power supply and cooling systems of computers.</p> <p>Case Study: Optimizing electrical energy consumption in industries: How to reduce power costs by using efficient machines and improving power factor.</p>	7
4.	<p>Semiconductor Basics and Applications: Introduction to Semiconductor Materials: Properties of intrinsic and extrinsic semiconductors. PN Junction Diode: Structure, working principle, and characteristics. Applications of Diodes: Rectifiers (half-wave, full-wave) and voltage regulation using Zener diodes.</p> <p>Application in Computer Systems: Use of diodes in voltage regulation, switching, and protection circuits for computers.</p> <p>Case Study: Design and analysis of a simple rectifier circuit used in a DC power supply for electronic devices.</p>	7
5.	<p>Transistors and Amplifiers: Introduction to Transistors: Bipolar Junction Transistors (BJTs) and Field Effect Transistors (FETs). Working Principles: BJTs and FETs configurations (common-emitter, common-source). Transistor Amplifiers: Operation, biasing, and applications.</p> <p>Application in Computer Systems: Role of transistors in switching circuits and signal amplification in computing devices.</p> <p>Case Study: Designing a simple amplifier circuit for an audio system using a transistor and understanding the real-world challenges in amplifier design.</p>	7
6.	<p>Digital Electronics Fundamentals: Number Systems: Number systems (Binary, Octal, Decimal, Hexadecimal), Binary arithmetic (addition, subtraction, multiplication, division), Character representation (ASCII, Unicode). Logic Gates, De Morgan's Laws, Boolean Algebra: Basic gates: AND, OR, NOT, NAND, NOR, XOR, XNOR,</p>	7

DEPARTMENT OF COMPUTER ENGINEERING

	Simplification using Boolean algebra and Karnaugh Maps. Application in Computer Systems: Digital circuits for data processing, memory units, and arithmetic operations in computer processors.	
	TOTAL	42

List of Experiments:**Group A: Basics of Electrical Engineering Practical Assignments (Any 5)**

1. Verify Ohm's law by measuring current and voltage across different resistors.
2. Apply Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL) in a multi-loop DC circuit and validate results.
3. Measure and plot AC waveforms using an oscilloscope, determining amplitude, frequency, and phase.
4. Calculate impedance in RLC (Resistor-Inductor-Capacitor) circuits using AC voltage and current measurements.
5. Measure the efficiency and voltage regulation of a single-phase transformer.
6. Experiment with speed control methods of a DC motor and analyze performance.

Group B: Basics of Electronics Engineering Practical Assignments (Any 5)

1. Study the forward and reverse bias characteristics of a PN junction diode and plot the V-I characteristics.
2. Construct and analyze the performance of half-wave and full-wave rectifier circuits.
3. Use a Bipolar Junction Transistor (BJT) as a switch in a basic circuit and measure the output response.
4. Design and implement a common-emitter transistor amplifier circuit and measure voltage gain.
5. Implement basic logic gates (AND, OR, NOT) using ICs and verify their truth tables.
6. Implement basic logic gates (NAND, NOR, XOR) using ICs and verify their truth tables.

Text Books:

1. S.K. Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson Education.
2. V.K. Mehta and Rohit Mehta, S., "Principles of Electrical Engineering and Electronics", Chand Publications.
3. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education.

Reference Books:

1. Leonard S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
2. H. Cotton, "Electrical Technology", CBS Publishers.
3. Donald A. Neamen, "Microelectronics: Circuit Analysis and Design", McGraw Hill Education.

E-Resources:**1. NPTEL (National Program on Technology Enhanced Learning):**<https://nptel.ac.in/>

- Course on Basic Electrical Circuits
- Course on Semiconductor Devices

2. Coursera: <https://www.coursera.org/>

- Courses related to Electrical Engineering and Electronics.

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Artificial Intelligence and Machine Learning)				Semester: I				
Course: Problem Solving and Logic Building				Code: 25AMES102				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)				
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR
02	02	-	03	40	60	50	-	150

Prerequisites:

Basic knowledge of computers and operating systems, logical reasoning, and analytical thinking skills.

Course Objectives:

1. To understand the fundamentals of C programming and develop structured solutions for computational problems.
2. To apply control structures, functions, arrays, pointers, and structures to design modular and efficient programs.
3. To demonstrate problem-solving skills through advanced programming concepts such as dynamic
4. Memory allocation, file handling and case studies in real-world applications.

Course Outcomes:

CO1	To apply the fundamental concepts of C programming to develop simple problem-solving programs.
CO2	To analyze and implement control structures, decision-making, and iterative constructs to solve computational problems.
CO3	To apply the concepts of functions, recursion, and storage classes for modular program development and structured problem-solving.
CO4	To evaluate and implement algorithms using arrays and strings to solve mathematical, logical, and puzzle-based problems.
CO5	To apply and analyze pointers, dynamic memory management, structures, and unions to develop efficient problem-solving applications.
CO6	To design and develop programs using file handling techniques for real-world applications.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Introduction to C Programming: Evolution of C Programming, Features of C Programming, Algorithm, pseudo code, flow chart, Structure of a C program, Compilation and Execution process C Tokens: Keywords, Identifiers, Constants, Operators, Data types Standard Input/Output functions in C: scanf, printf Variables and Expressions, Type Casting, basic Programs in C (arithmetic problems, temperature conversion, interest calculation)</p> <p>Preprocessor: Role of Preprocessor, Format of Preprocessor directives.</p>	4

DEPARTMENT OF COMPUTER ENGINEERING

2	Control Structures and Problem Solving: Decision Making: if, if-else, Nested if, ladder, switch case Control statements: break, continue, goto Inbuilt libraries: math, time, date Looping Constructs: for, while, do-while Applications in problem solving: prime numbers, factorial, Fibonacci series, palindrome, Armstrong number Problem solving using games/patterns: Tic-Tac-Toe (conditions), Number Guessing, Pattern printing	5
3	Arrays, Strings: One-Dimensional and Two-Dimensional Arrays Operations: Matrix Addition/Multiplication Transpose String Handling in C (character arrays, standard string functions) Logic Building using Arrays & Strings (marks analysis, palindrome string, anagram check, sudoku row validation) Puzzle-based logic building (crossword word search, cryptarithmetic basics)	4
4.	Functions: Definition, Declaration, Calling Types of Parameters: Actual parameter, formal parameter Methods of passing Parameter: Call by value, Call by reference Recursion and its applications (factorial, Fibonacci, Towers of Hanoi) Modular problem solving using functions (GCD, LCM, Menu-driven programs) Use of pseudocode & flowcharts for structured design	5
5	Advanced Problem Solving and Applications Pointers: Basics, Pointer Arithmetic, Pointers with Arrays and Functions Relationship between Arrays & Pointers-Pointer to array, Array of Pointers. Functions and Pointers- Passing pointer to Function, returning pointers from function, function pointer. Dynamic memory management-Allocation (malloc(), Calloc()),Resizing(realloc()), Releasing(free()).Memory leak, dangling pointers. Types of pointers.Structures and Unions: Accessing structure member, nested structure, array of structure Structure and functions Structure vs Union	5
6.	File Handling in C: Introduction to Streams Types of Files : Operations on text files. Random access file operations: (fseek, ftell, fflush,remove,rename,rewind) Reading/Writing Data from Files Case Studies: <ul style="list-style-type: none">• ATM Simulation• Vending Machine Logic• Student Record Management System (structures & files)• Matrix-based Applications (Graph traversal basics)• Banking/E-ticket system (menu-driven)	5
TOTAL		28
List of Experiments:		
<ol style="list-style-type: none"> 1. Design a flowchart, write pseudocode, and implement a C program to calculate Simple Interest and Compound Interest for a given principal, rate, and time. 2. Divide and Conquer Example: Design a flowchart and implement a C program that calculates the Greatest Common Divisor (GCD) of two integers using the Euclidean algorithm. 		

DEPARTMENT OF COMPUTER ENGINEERING

3. Write C programs to perform:
 - a) Temperature conversion (Celsius ↔ Fahrenheit)
 - b) Swap two numbers (with and without using a temporary variable)
4. Decision-Making Programs: Implement C programs using conditional statements to:
 - a) Find the largest of the three numbers
 - b) Calculate grade based on marks (90–100: A, 75–89: B, etc.)
 - c) Build a simple calculator using a switch statement
5. Loops and Patterns: Write C programs to:
 - a) Print different star and numeric patterns
 - b) Compute the sum of the first N natural numbers
 - c) Generate factorial and Fibonacci sequence
6. Game Logic: Number Guessing / Tic-Tac-Toe:
 - a) Implement a number guessing game where the computer generates a number and the user guesses until correct.
 - b) Implement a two-player Tic-Tac-Toe game with input validation and winner detection.
7. 2D Array and Matrix Operations: Problem Statement: Implement C programs to perform:
 - a) Matrix addition and subtraction
 - b) Transpose of a matrix and check if it is symmetric
8. String Handling Programs: Implement C programs to:
 - a) Reverse a string
 - b) Check if a string is a palindrome (ignore spaces and cases)
 - c) Count the number of vowels, consonants, digits, and spaces in a string
 - d) Word search: Check if a word exists in a given row of a 2D character grid
9. Recursion Examples: Write recursive C programs for:
 - a) Factorial of a number
 - b) Fibonacci sequence
 - c) Towers of Hanoi problem (show moves)
10. Menu-Driven Program (GCD, LCM, Prime Factors): Write a modular C program with functions and a menu-driven interface to compute:
 - a) GCD of two numbers.
 - b) LCM of two numbers
 - c) Prime factorization of a number
11. Pointers and Dynamic Memory: Problem Statement: Implement C programs to:
 - a) Reverse an array using pointers
 - b) Allocate memory dynamically for an array and compute the average of the entered numbers
 - c) Perform matrix addition using dynamic memory allocation.

DEPARTMENT OF COMPUTER ENGINEERING

. Structures and File Handling: Student Records: Create a structure for student details (roll no, name, marks). Implement file operations to:

- Add new student records
- Display all records
- Update a record
- Delete a record

13. Case Study: ATM Simulation: Implement an ATM simulation using structures and file handling.

Support operations:

- User authentication (PIN check)
- Balance inquiry
- Deposit and withdrawal (with balance check)
- Mini-statement (transaction log in file)

14. Puzzle/Matrix-Based Problem

- Problem Statement: Implement an 8-Puzzle program using a 3×3 matrix. Allow the user to move the blank tile (up/down/left/right) and check whether the puzzle is solved.

15. File Parsing and Data Analysis

- Problem Statement: Write a program to read student marks from a file and generate a report containing:
 - Highest, lowest, and average marks
 - Grade distribution (A, B, C, etc.)
 - Top 3 students

16. Mini-Projects (Pick 1)

- Student Record Management System – Complete CRUD with file persistence.
- ATM Simulation – With authentication, transactions, and logs.
- E-Ticket Booking System – Book/cancel tickets, track seat availability in a 2D array.
- Sudoku Validator – Check if a given Sudoku grid is valid

Text Books:

- Maureen Spankler, "Problem Solving and Programming Concepts", Pearson; 9th edition, ISBN-10: 9780132492645, ISBN-13: 978- 0132492645
- Think Like a Programmer: V. Anton Spraul, Edition: 1st Edition (2012), ISBN: 978-1593274245

Reference Books:

- "How to Solve It: A New Aspect of Mathematical Method" by George Pólya, ISBN: 78-0691119663
- Match your wits with the "human computer". PUZZLES TO PUZZLE YOU , ORIENT PAPERBACKS by Shakuntaladevi

DEPARTMENT OF COMPUTER ENGINEERING

3. "The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses, and Ecosystems" by Michael Lewrick, Patrick Link, and Larry Leifer, **ISBN:** 978-1119467472
4. "Introduction to Logic Design" by Alan B. Marcovitz, **ISBN:** 978-0073191645
5. "Gamestorming: A Playbook for Innovators, Rulebreakers, and Changemakers" by Dave Gray, Sunni Brown, and James Macanufo, **ISBN:** 978-149190312
6. A Whack on the Side of the Head: How You Can Be More Creative, Roger von Oech 25th Anniversary Edition (2008), **ISBN:** 978-0446404662

E-Resources:

1. <https://brilliant.org/logic/>
2. <https://www.brainbashers.com/>
3. <https://sudoku.com/>
4. <https://puzzlemaker.discoveryeducation.com/>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I									
Course: Web Application Development	Code: 25COVS101									
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)									
Lecture	Practical	Tutorial	Credit	IE	MTE	ETE	TW	OR	PR	Total

Prerequisites:

Knowledge of logic and any programming.

Course Objectives:

1. To understand HTML Fundamentals: elements, attributes, head, body structure.
2. To utilize CSS3 Techniques syntax, manage inclusion, and manipulate properties like color, background, and fonts.

Course Outcomes: After completion of this course, student will be able to -

CO1	Use HTML formatting tags to present content on web page.
CO2	Develop web page using list and hyperlinks.
CO3	Develop web pages using images, colors and backgrounds.
CO4	Design HTML forms using table and frames.
CO5	Apply presentation schemes on content using CSS.
CO6	Publish websites on internet or intranet.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to HTML Terminologies used in Web Design: World Wide Web (www), Web Pages, Web Site, Web Browsers, Web Servers and types of sites. Static vs. dynamic web sites, Search Engine. Web page structure: DOCTYPE, HTML, TITLE, HEAD, BODY and other meta tags with attributes. Block Level Elements: Headings, Paragraphs, Breaks, Divisions, Centered Text, Block Quotes, Preformatted text, types of Address, HR tag. Horizontal Rue. Text Level Elements: Bold, Italic, Teletype, Underline, Strikethrough, Superscript, Subscript, DIV tag, displaying special characters, comments.	9
2.	Lists and Links Lists: Ordered Lists, Unordered Lists, Definition Lists, Nested Lists. Links: Absolute, Relative and Inline links, use image as link, link to an email address, button as link, types of links, linking various documents for internal and external links, to link different web page of same site, link different location on the same web page, a specific location on different web page of same site, to specific section within the document, inserting E-mail link.	9
3.	Images, Colors and Background Image: Types of image format, jpg, bmp, png gif etc. IMG tag, alternate text, image alignment, HSPACE, VSPACE, wrapping text, height and width of images,	9

DEPARTMENT OF COMPUTER ENGINEERING

	Image as a link, Inserting Images, formatting image for sizing, alignment. Border and using other attributes with IMG tag. Colors and Backgrounds: The text color, color attribute of FONT tag, text attribute of BODY tag. bgcolor attribute of BODY tag, changing link colors: link, alink, vlink, attributes of BODY tag, Backgrounds: Inserting image as page background, background attributes of BODY tag, creating solid color page background.	
4.	Table, Frames and Forms Table: Table tag with attributes. TABLE, <tr>, <th>, <td> tags. Border, cell spacing, cell padding, width, align, bgcolor attributes. Adding captions: CAPTION tag Formatting contents in the table cells: align, valign, bgcolor, height, width, nowrap attributes. Spanning rows and columns: rowspan and colspan attributes. Frames: Types of Frames with their attributes, Creating frames: FRAMESET tag – rows, cols attributes, FRAME tag – name, frame border, margin height, margin width, src, resize, scrolling Attributes, Use of NOFRAMES tag, Frame targeting. Forms: Creating basic form: FORM tag, action and method attributes, Form fields: Single line text field, password field, multiple line text area, radio buttons, and check boxes. Pull down menus: SELECT and OPTION tags. Buttons: submit, reset and generalized buttons. Formatting technique: Using table to layout form.	9
5.	Cascading Style sheets Cascading Style Sheets: Different types of Style Sheets, Benefits of using CSS. Adding style to the document: Linking to style sheets, Embedding style sheets, Using inline style, Selectors: CLASS rules, ID rules. Style sheet properties: Font, text, box, color and background properties; Creating and Using a simple external CSS file; Using the internal and inline CSS; background and color gradients in CSS Setting font and text in style sheet using table layout.	10
6.	Website Hosting Website Hosting: Concept of Internet and Intranet. Publishing website on Intranet, installing and configuring web server, uploading files on intranet site, access intranet-based website, publishing website site on Internet, hiring web space, uploading files using FTP, virtual hosting, access internet-based website.	10
TOTAL		56

List of Experiments:

1. Create web page using structure tags to display sample message.
2. Create a web page for displaying a paragraph using formatting tags, HR tags.
3. Create a web page using text level and border level tags.
4. Design a web page for implementing ordered list and unordered list.
5. Create a web page to link:
 - A different web page of same site
 - A different location on the same web page
 - A Specific location on different web page of same site

DEPARTMENT OF COMPUTER ENGINEERING

6. Create a webpage which includes photos and align with the ALT property on the left, right, and center.
7. Insert images on web page using various attributes and set image as background.
8. Create a webpage containing any image and add a hyperlink to another webpage. Use width and height property for an image.
9. Create table within table and also insert an image within the data elements of the table.
10. Create a webpage that displays first year timetable. Make effective use of rowspan and colspan attributes. Make use of <th> tag.
11. Create a webpage that provides a form for filling information. The webpage must contain following elements:
 - Textbox
 - Radio buttons
 - Checkboxes
12. Create a webpage that provides a form for filling information. The webpage must contain following elements:
 - Buttons (Submit/Reset)
 - Text area
 - Textbox for passwords
13. Create a web page for demonstration of CSS by applying internal style, external and inline style.
14. Create a web page for demonstration of CSS responsive web design.
15. Create a website and host on open source.
16. Create a web page to represent personal portfolio.

Text Books:

1. Jon Duckett's HTML and CSS
2. A beginner's guide to HTML, CSS, Javascript, and Web Graphics, by Jennifer Niederst Robbins
3. HTML 5 Black Book (Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP, jQuery) 2Ed., DT Editorial Services

Reference Books:

1. Marty Hall, Larry Brown, "Core Web Programming", Second Edition, Pearson Education, 2001, ISBN 978-0130897930.
2. H.M. Deitel, P.J. Deitel and A.B. Goldberg, "Internet & World Wide Web How To Program", Third Edition, Pearson Education, 2006, ISBN 978-0131752429.
3. Chris Bates, "Web Programming Building Internet Applications", 3rd Edition, Wiley India, 2006.
4. Xue Bai et al, "The web Warrior Guide to Web Programming", Thomson, 2003

E-Resources:**MOOC / NPTEL/YouTube Links:**

1. <http://www.nptelvideos.in/2012/11/internet-technologies.html>
2. <https://freevideolectures.com/course/2308/internet-technology/25video lecture by Prof. Indranil>

DEPARTMENT OF COMPUTER ENGINEERING

Sengupta, IIT, Kharagpur

3. <https://www.digimat.in/nptel/courses/video/106105191/L01.html>
4. https://www.w3schools.com/html/html_blocks.asp
5. <https://www.javatpoint.com/html-frame-tag>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Professional Development – I	Code: 25COCC101								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	50	-	-	50

Course Objectives:

1. To introduce students on professional development skills and its importance in building personal and professional life.
2. To bring in self-awareness and realization of Values, Self-discipline and self-grooming for betterment of life and contribution to our Society.

Course Outcomes: After completion of this course, students will be able to -

CO1	Know their own values and how to use in their career and personal life.
CO2	Understand the importance of self-discipline and how it can empower individuals to take control of their actions and decision in any situation.
CO3	Know the importance of self-grooming to maintain good health and self-confidence.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Values: Understand, Know, Define and Use of your Values, Types of Values, Internal and External Stakeholders, What is SWOT analysis and how to do, Action planning and execution, Self-review.	24
2.	Self-discipline: Definition, Self-discipline impact in your life and society, Techniques to build self-discipline, Self-review and actions.	16
3.	Self-grooming: What is personal grooming and its importance, Making Self-care guide and practice, Self-care for health and well-being.	16
TOTAL		56

Text Books:

1. R. Srinivasan, "Strategic Management: Text and Cases", PHI Publication.
2. M. K. Sinha, "Success Through Self-Discipline: Your Personal Guide to Achieving Your Goals".

Reference Books:

1. Stephen R. Covey, "The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change", Simon & Schuster, 1989.
2. Jack Canfield, "The Success Principles", HarperCollins, 2005.
3. Norman Vincent Peale, "The Power of Positive Thinking", Prentice Hall, 1952.

E-Resources:

1. Coursera: "The Science of Well-Being" by Yale University, -
<https://www.coursera.org/learn/the-science-of-well-being>
2. Udemy: "Self-Care: Take Care of Yourself to Better Take Care of Others" by Jessica Rogers
<https://www.udemy.com/course/caring-self/?couponCode=UPGRADE02223>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Guitar)	Code: 25COCC102A								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Guitar musical instrument.

Course Objectives:

1. To build a strong foundation in Indian classical dance through mastering basic techniques, rhythms, expressions, and repertoire, culminating in a performance.

Course Outcomes: After completion of this course, students will be able to -

CO1 Illustrate the fundamental aspects of Guitar instrument.

CO2 Demonstrate the performance of Guitar Instrument.

CO3 Apply different types Chords.

CO4 Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to the Guitar	2
2.	Understanding standard tuning	2
3.	Introduction to tablature and note reading	2
4.	Introduction to basic music theory concepts	2
5.	Understanding scale, intervals, and chords	2
6.	Learning more open chords: D major, D minor, C major, G major	2
7.	Understanding power chords and their shapes	2
8.	Understanding barre chord shapes: F major, B minor	2
9.	Finding Chords by Ear	2
10.	Chord Progressions	2
11.	Advanced Chord Types	2
12.	Transposing Chord	2
13.	Review and Practice	2
14.	Introduction to Scales	2
TOTAL		28

Text Books:

1. David Hodge, "Guitar Theory", DK Publishing.

Reference Books:

1. Russ Shipton, "The Complete Guitar Player", Published by Wise.
2. Vincent Ong, Alfred Khp, "Classical Guitar Advanced Studies Repertoires", Dynamic Publication.

E-Resources:

1. <https://www.youtube.com/watch?v=BBz-Jyr23M4>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Singing)	Code: 25COCC102B								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music in singing.

Course Objectives:

1. To offer students' knowledge of the basic concepts of Singing in a very easy to understand manner with their practical applicability.

Course Outcomes: After completion of this course, students will be able to -

CO1 Illustrate the fundamental aspects of Singing.

CO2 Demonstrate the performance of Singing.

CO3 Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Voice Culture in Indian Semi Classical Singing.	2
2.	Basics of Singing o Introduction to semi classical singing.	2
3.	Basics of Indian Semi Classical Music.	2
4.	Learning Basic Ragas.	2
5.	Music Theory Basics.	2
6.	Vocal Warm-ups.	2
7.	Introduction to Ear Training.	2
8.	Breathe Control.	2
9.	Resonance and Tone Production.	2
10.	Diction and Articulation.	2
11.	Dynamics and Expression.	2
12.	Introduction to Repertoire.	2
13.	Practice Techniques.	2
14.	Interpretation and Expression.	2
TOTAL		28

Text Books:

1. Dr. Theodore Dimon, "Anatomy of the Voice, This Is a Voice".

Reference Books:

1. Richard Miller, "The Structure of Singing", Schirmer Books, London.
2. Jennifer Hamady, "The Art of Singing", Published by Hal Leonard.

E-Resources:

1. <https://www.youtube.com/watch?v=4hNq9qykOyE>
2. <https://www.youtube.com/watch?v=b14gkmECz-Y>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: I				
Course: Liberal Learning – I (Cinematography)					Code: 25COCC102C				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

A basic understanding of film theory, Camera operation, Lighting techniques and visual storytelling is essential for cinematography.

Course Objectives:

1. To make students effectively use their camera's components, study fundamental photography techniques and apply basic to advanced editing skills.

Course Outcomes: After completion of this course, students will be able to -

CO1	Illustrate the fundamental aspects of camera equipment.
CO2	Demonstrate the performance of camera equipment
CO3	Ability to translate creative concepts into visually engaging and coherent film or video projects.
CO4	Mastery in crafting compelling visual narratives through camera angles, lighting, and composition

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Photography	2
2.	Understanding camera components (lens, shutter, sensor)	2
3.	Exposure Triangle	2
4.	Introduction to the rule of thirds, leading lines, and framing	2
5.	Understanding autofocus vs. manual focus	2
6.	Introduction to natural and artificial lighting	2
7.	White Balance and Color Theory	2
8.	Motion and Long Exposure	2
9.	Basics of portrait photography	2
10.	Basics of landscape photography	2
11.	Overview of post-processing software (e.g., Adobe Light room, Photoshop)	2
12.	Introduction to advanced editing tools	2
13.	Organizing and Storing Photos	2
14.	Final Project Presentation and Review	2
TOTAL		28

Text Books:

1. Tania Hoser, "Introduction to Cinematography", Taylor & Francis.

Reference Books:

1. Anat Pick, "Screening Nature", Berghahn Books.
2. Blain Brown, "Cinematography: Theory and Practice", Taylor & Francis.

E-Resources:

1. <https://youtu.be/V7z7BAZdt2M?si=to4yQ46zEKRbxK0m>
2. https://youtu.be/WXdAX0No2hM?si=GZu_mJsmyJ7NGnAU

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Dance)	Code: 25COCC102D								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Good stamina, flexibility and familiarity with simple rhythmic patterns and beats.

Course Objectives:

1. To build a strong foundation in Indian classical dance through mastering basic techniques, rhythms, expressions, and repertoire, culminating in a performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand the fundamental postures, hand gestures and basic steps of Indian classical dance.
CO2	Understand and perform dance sequences to various rhythmic cycles (Tala) with confidence.
CO3	Convey emotions and stories through facial expressions (Abhinaya) and body language.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Overview of Indian Classical Dance	2
2.	Fundamental Postures and Hand Gestures (Hasta Mudras)	2
3.	Introduction to Basic Steps (Adavus or Tatkars)	2
4.	Rhythmic Patterns and Clapping (Tala)	2
5.	Advanced Basic Steps	2
6.	Strength and Conditioning	2
7.	Introduction to Basic Expressions (Abhinaya)	2
8.	Integrating Steps and Expressions	2
9.	Intermediate Rhythmic Patterns	2
10.	Improvisation and Creative Movement	2
11.	Introduction to Advanced Movements	2
12.	Review and Feedback	2
13.	Learning a Simple Dance Piece - Part 1	2
14.	Learning a Simple Dance Piece - Part 2	2
TOTAL		28

Text Books:

1. Padma Subrahmanyam, "Indian Classical Dance: A Beginner's Manual", Abhinav Publications.

Reference Books:

1. Dr. Aditi Sriram, "Indian Classical Dance: A Guide", Vikas Publishing House.

E-Resources:

1. https://youtu.be/5apCTHzvkWI?si=p11CR_4XxPocTbjO
2. <https://youtu.be/OIKOHzePJCA?si=7pnPZKuvfT5EIWhf>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: I				
Course: Liberal Learning – I (Synthesizer/Keyboard)					Code: 25COCC102E				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Keyboard musical instrument.

Course Objectives:

1. To offer students' knowledge of the basic concepts of playing Keyboard in a very easy to understand manner with their practical applicability.

Course Outcomes:

CO1	Illustrate the fundamental aspects of Keyboard instrument.
CO2	Demonstrate the performance of Keyboard Instrument.
CO3	Apply different types of Chords.
CO4	Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to the Keyboard	2
2.	Understanding Notes and Keys	2
3.	Basic Music Theory	2
4.	Introduction to the C major scale	2
5.	Learning to play simple melodies in C major	2
6.	Introduction to Chords	2
7.	Combining Melodies and Chords	2
8.	Review and practice melodies and chords	2
9.	Introduction to Minor Scales	2
10.	Introduction to additional chords (D major, E minor)	2
11.	Understanding chord progressions (e.g., I-IV-V)	2
12.	Review scales, chords, and progressions	2
13.	Introduction to Arpeggios	2
14.	Dynamics and Expression	2
TOTAL		28

Text Books:

1. Chuan C. Chang, "Fundamentals of Piano Practice", Create space Independent Publishing Platform.

Reference Books:

1. Michael Rodman, "Keyboard for the Absolute Beginners", Alfred Publishing.
2. Davis Dorrough, "Piano Scales".

E-Resources:

1. https://youtu.be/2mPS-2guHVo?si=8X_4KKezIdrMejLH
2. <https://youtu.be/tEtukfFv3Wk?si=2iJ8wdD0dfjWauPb>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Basketball)	Code: 25COCC102F								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop foundational basketball skills, including dribbling, passing, shooting, and defense, while understanding game rules and strategies through practical gameplay and scrimmage.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate basic basketball skills such as dribbling, passing, shooting, and defensive fundamentals effectively.
CO2	Apply offensive and defensive strategies, including transition play, during gameplay and scrimmages.
CO3	Understand and implement basketball game rules and referee gestures accurately in practical situations.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Basketball	2
2.	Basic Skills – Dribbling	2
3.	Basic Skills- Passing	2
4.	Basic Skills- Shooting	2
5.	Defensive Fundamentals	2
6.	Rebounding Basics	2
7.	Ball Handling & Control	2
8.	Shooting Mechanics	2
9.	Offensive Strategies	2
10.	Defensive Strategies	2
11.	Transition Play	2
12.	Gameplay & Scrimmage	2
13.	Game Rules , Refree Gestures	2
14.	Practical	2
TOTAL		28

Text Books:

1. K.K. Sharma, "Basketball: Skills and Drills", Sports Publications.

Reference Books:

1. Dr. P.K. Kher, "Basketball Coaching: A Complete Guide", Khel Prakashan.
2. S. Reddy, "The Ultimate Guide to Basketball Training", Blue Rose Publisher.

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Cricket)	Code: 25COCC102G								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance cricket skills from basics to advanced techniques, focusing on tactics, fitness, and specialized fielding and wicket keeping through targeted practice and match simulations.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master fundamental and advanced cricket techniques, including batting, bowling, and specialized fielding and wicket keeping.
CO2	Demonstrate an understanding of game scenarios and tactical strategies, applying them effectively during match simulations and pressure situations.
CO3	Improve physical fitness, strength, and conditioning, with targeted skill enhancement and mid-season assessments to track progress.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction and Fundamentals.	2
2.	Basic Techniques.	2
3.	Introduction to Game Scenarios.	2
4.	Physical Fitness and Match Simulations.	2
5.	Advanced Batting Techniques	2
6.	Advanced Bowling Techniques	2
7.	Specialized Fielding and Wicket keeping	2
8.	Tactical Understanding	2
9.	Refining Batting Techniques	2
10.	Refining Bowling Techniques	2
11.	Fielding Under Pressure	2
12.	Strength and Conditioning	2
13.	Targeted Skill Improvement	2
14.	Mid-Season Assessment	2
TOTAL		28

Text Books:

1. Sanjay Manjrekar, "Cricket Fundamentals", Orient BlackSwan
2. Ravi Shastri, "Winning Cricket: Skills and Strategies", Notion Press

Reference Books:

1. Sachin Tendulkar, "Playing It My Way", Hachette India
2. Rahul Dravid, "Cricket: The Game of Life", Penguin India

E-Resources:

1. Sports and Performance Nutrition, IIT Madras, https://onlinecourses.nptel.ac.in/noc24_hs82/

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I
Course: Liberal Learning – I (Rifle and Pistol Shooting)	Code: 25COCC102H
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)
Lecture	Practical
-	02
Tutorial	Credit
-	01
CIE	ETE
-	-
TW	OR
25	-
PR	Total
-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop fundamental skills in rifle and pistol shooting through technical knowledge, practical drills, and mental preparation for competitive performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master fundamental and advanced shooting techniques for both rifle and pistol, including aiming, breathing, and triggering.
CO2	Develop strong mental focus and relaxation techniques essential for high-performance shooting and competition readiness.
CO3	Gain hands-on experience in live shooting drills and positional shooting, preparing them for competitive shooting scenarios.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction about shooting game	2
2.	Basic technical knowledge	2
3.	Technique Refinement(aiming, breathing and triggering)	2
4.	Learning about live shooting and technics	2
5.	Practicing standard Positional rifle Shooting	2
6.	Mental Preparation and Focus	2
7.	Practice and learning session of live shooting(rifle)	2
8.	Learning about pistol shooting(pistol)	2
9.	Introduction of pistol positions and dry practice	2
10.	Practical Shooting Drills (basic)	2
11.	Learning about live shooting and technics(standing position)	2
12.	Learning of Concentration, breathing and relaxing exercise for shooting	2
13.	Introduction of competition level and practice	2
14.	Final test and oral (rifle and pistol match)	2
TOTAL		28

Reference Books:

1. David Watson, "ABCs of Rifle Shooting", Gun Digest (Imprint of KP Books), 2014

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I
Course: Liberal Learning – I (Volleyball)	Code: 25COCC102I
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)
Lecture	Practical
-	02
Credit	CIE
01	-
ETE	TW
-	25
OR	PR
-	-
Total	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop foundational volleyball skills, including serving, passing, setting, spiking, and blocking, while mastering game rules and strategies through practical gameplay and scrimmage.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate proficiency in basic volleyball skills such as serving, passing, setting, spiking, and blocking.
CO2	Apply offensive and defensive strategies effectively, including serve receive and transition play, during gameplay.
CO3	Understand and implement volleyball rules and referee gestures, applying them accurately during practical gameplay and scrimmages.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Volleyball	2
2.	Basic Skills - Serving	2
3.	Basic Skills- Passing	2
4.	Basic Skills- Setting	2
5.	Spiking Basics	2
6.	Blocking Basics	2
7.	Digging Basics	2
8.	Serve Receive	2
9.	Offensive Strategies	2
10.	Defensive Strategies	2
11.	Transition Play	2
12.	Gameplay & Scrimmage	2
13.	Game Rules , Refree Gestures	2
14.	Practical	2
TOTAL		28

Text Books:

1. Jitendra Kumar, "The Complete Guide to Volleyball", Blue Rose Publisher

Reference Books:

1. N. Ramachandran, "Volleyball: Steps to Success", Sports Publication

E-Resources:

1. <https://coachtube.com/course/volleyball/volleyball-for-beginners/7004>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: I								
Course: Liberal Learning – I (Football)	Code: 25COCC102J								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance players' technical skills, tactical understanding, physical fitness, teamwork, and sportsmanship, fostering a comprehensive understanding and appreciation of the game.

Course Outcomes: After completion of this course, students will be able to -

CO1	To identify and describe the fundamental skills and strategies involved in football, including ball control, dribbling techniques, basic offensive and defensive tactics.
CO2	To apply advanced dribbling and passing techniques during practice sessions.
CO3	To design and execute a cohesive game plan that integrates set pieces, team chemistry, and communication, evaluating its effectiveness through simulation matches.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction and Basic Skills.	2
2.	Ball Control and Movement.	2
3.	Advanced Dribbling and Passing.	2
4.	Shooting and Finishing.	2
5.	Offensive Tactics.	2
6.	Defensive Tactics.	2
7.	Set Pieces (Offensive and Defensive).	2
8.	Team Chemistry and Communication.	2
9.	Midfield Dominance.	2
10.	Forward Play and Creativity.	2
11.	Defense Organization.	2
12.	Goalkeeper Training.	2
13.	Speed and Agility.	2
14.	Simulation Matches.	2
TOTAL		28

Text Books:

1. Srinivasan J. B, "Football Coaching: A Comprehensive Guide", Sports Publishing.

Reference Books:

1. Rob Ellis, "The Complete Guide to Coaching Soccer", Meyer & Meyer Sport.

E-Resources:

1. Udemy – Soccer Courses - <https://www.udemy.com/topic/soccer/>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: I				
Course: Indian Knowledge System and Financial Literacy					Code: 25COIK101				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	-	-	02	-	-	50	-	-	50

Prerequisites:

Basic knowledge of algebra and mathematical operations.

Course Objectives:

1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the importance of roots of Indian Knowledge System.
2. To make students proficient in fundamental financial concepts essential for managing personal finances effectively.
3. To equip students with practical budgeting skills to empower them to achieve financial independence.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand IKS fundamentals, Indian numeral system, and key contributions in mathematics and measurement.
CO2	Recognize metal working techniques, Vastushastra principles, historical engineering and architecture practices.
CO3	Understand financial concepts, money types, bank accounts, and essential financial terms for practical application.
CO4	Manage budgets, credit, loans, and develop financial plans for career and education goals.
CO5	Understand various investments, risk management, insurance types, and develop retirement planning strategies.
CO6	Comprehend tax forms, compliance, fraud protection, and financial considerations for investments and business.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Foundations of Indian Knowledge System: Definition and scope of IKS, Historical development and significance.</p> <p>Number System and Units for Measurement: Salient features of the Indian numeral system, The discovery of zero and its importance, Decimal Systems, Measurement of time, distance and weight.</p> <p>Mathematics: Unique aspects of Indian mathematics, Great mathematicians and their significant contributions in the area of arithmetic, algebra, geometry, trigonometry, binary mathematics.</p>	5
2.	<p>Application of Indian Knowledge System: Metals and Metal Working: Mining and ore extraction, Extraction of iron from Biotite by indigenous techniques, Lost wax casting of idols and artefacts, Architecture and Structures: Vastushastra, Unitary buildings and Town planning,</p>	5

DEPARTMENT OF COMPUTER ENGINEERING

	Temple architecture. Physical structures in India, Irrigation and water management	
3.	Finance: Importance of Financial Literacy for Engineers, Understanding Money, Types of Money- Cash, Cheque, UPI Payment, Digital Currency, etc Types of bank accounts - saving, salary, current, loan, etc., Basic financial Terms- Income, Expenditure, Balance, saving, loan, interest rates, compound interest rate, credit, Investment, Taxes	4
4.	Financial Planning: Personal budgeting, Understanding debit and credit card, credit score, Types of credit card, credit card payment cycle, Barrowing, Loans / Debts, Types of loans, Terms of barrowing, Loan, Interest rate, Principal, EMI, EMI Calculation, Repayment of loan/debt strategy, Financial Planning for Career Development, Higher studies,	5
5.	Investment and Wealth Management: Basics of Investing, Effect of compounding, Types of Investment (fixed deposit, recurring deposits, Insurance policies, Bonds, Mutual Funds, Stocks, real estate, etc.) Risk and Return, Concept of SIP, STP and SWP, Stock Market, Stock Exchanges, reading of stock market indices, Life insurance, healthcare insurance, vehicle insurance, Importance of early retirement planning, Investment strategy, Pension Plan, Portfolio management,	5
6.	Finance Compliance: Types of Taxes, Types of Income Tax return form and Filling, Taxes and reforms, Impact of taxation policy on Investment, Scams and Frauds, Protection of personal information, Financial consideration for starting business, Real estate and purchase	4
TOTAL		28

Text Books:

1. B. Mahadevan, Vinayak Rajat Bhat, Nagendra Pawana R. N., "Introduction to Indian Knowledge System – Concepts and Applications", PHI Learning Pvt. Ltd., New Delhi.
2. Dr. Babu V., Mr. Mohammed Umair, "Financial Literacy", Himalaya Publishing House, First Edition.

Reference Books:

1. A. K. Bag, "History of Technology in India", Vol. I, Indian National Science Academy, New Delhi.
2. Dr. S. Gurusamy, "Indian Financial System", Tata McGraww-Hill Education Pvt. Ltd 2nd Edition.
3. D.N. Bose, S.N. Sen and B. V. Subbarayappa, "A Concise History of Science in India", Indian National Science Academy, New Delhi.

E-Resources:

1. SWAYAM - "Indian Knowledge System(IKS): Concepts and Applications in Engineering", Indian Institute of Management Bangalore (IIMB), Chanakya University, Bangalore.
https://onlinecourses.swayam2.ac.in/imb23_mg53/preview
2. SWAYAM - "Introduction to Banking and Financial Markets", Indian Institute of Management Bangalore (IIMB), - https://onlinecourses.swayam2.ac.in/imb23_mg14/preview
3. Online free course on "Financial Literacy" by Khan Academy.
<https://www.khanacademy.org/college-careers-more/financial-literacy/xa6995ea67a8e9fdd:welcome-to-financial-literacy>

DEPARTMENT OF COMPUTER ENGINEERING

SYLLABUS
SEMESTER - II

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: Engineering Mathematics - II	Code: 25COBS203								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	-	-	03	40	60	-	-	-	100

Prerequisites:

Basic concept of Differentiation, Integration and Vector.

Course Objectives:

1. To introduce student some methods to find the solution of first order & first degree ordinary differential equations with its applications.
2. To make students familiar with vector differentiation.
3. To acquaint the student with mathematical tools needed in evaluating improper integrals, multiple integrals and their usage.

Course Outcomes: After completion of this course, students will able to -

CO1	Solve first order ordinary differential equation.
CO2	Apply differential equation in engineering applications.
CO3	Find the velocity vector, gradient, divergence, curl.
CO4	Evaluate improper integrals.
CO5	Set up and solve multiple integrals for regions in the plane.
CO6	Use of multiple integrals to find area bounded by curves & volume bounded by surfaces.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	First Order Ordinary Differential Equation: Exact differential equations, Equations reducible to exact form. Linear differential equations, Equations reducible to linear form and Bernoulli's equation.	7
2.	Applications of Differential Equations: Applications of differential equations to orthogonal trajectories, Newton's law of cooling, Kirchhoff's law of electrical circuits, Rectilinear motion, Simple harmonic motion, One dimensional conduction of heat.	7
3.	Vector Differential Calculus: Velocity vector, acceleration vector, tangential and normal component of acceleration, Vector differential operator, gradient, directional derivatives, angle between surfaces, Divergence and curl, solenoidal and irrotational field	7
4.	Integral Calculus: Reduction formulae, Beta and Gamma functions, Differentiation under integral sign and Error functions.	7
5.	Multiple Integrals: Double integration in Cartesian & polar coordinates, Change of order of integration, Triple integral in Cartesian & polar coordinates.	7
6.	Applications of Multiple Integral: Applications to find Area, Volume, Mass, Centre of gravity and Moment of inertia.	7
TOTAL		42

DEPARTMENT OF COMPUTER ENGINEERING

Text Books:

1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill.
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication
3. H.K.Dass, "Higher Engineering Mathematics", S.Chand Publication
4. C.Ray Wylie &L.Barrett, "Advanced Engineering Mathematics", McGraw Hill Publications.

Reference Books:

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.
2. M. D. Greenberg, "Advanced Engineering Mathematics", Pearson Education
3. Peter V. O'Neil, "Advanced Engineering Mathematics", Thomson Learning
4. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics (Vol. I & Vol. II)", VidyarthiGrihaPrakashan, Pune.
5. Ron Larson and David C. Falvo, "Elementary Linear Algebra", Houghton Mifflin Harcourt Publishing Company

E-Resources:

1. A NPTEL Course on "Engineering Mathematics-II" IIT Khargpur - https://youtube.com/playlist?list=PLbRMhDVUMngeVrxtbBz-n8HvP8KAWBpI5&si=3xAONJdT2ph_jcvG
2. Applications of Differential Equations | Orthogonal Trajectories - <https://www.youtube.com/watch?v=Ziu0y2kWTCM&list=PLT3bOBUU3L9juyFTI3lpeXXhIetVB00cr>
3. "Applications of Differential Equations| Newton's law of Cooling -" https://www.youtube.com/watch?v=gJSvcf9_Duc
4. Dr.GajendraPurohit, "Gradient of a Scalar Field & Directional Derivative | Normal Vector" <https://www.youtube.com/watch?v=9CHfHuFBTw8&list=PLU6SqdYcYsfJz9FAzbgoctIjlkw4NXAar-&index=2>
5. Dr.GajendraPurohit, "Double Integral & Area By Double Integration | Multiple Integral" https://www.youtube.com/watch?v=db7d_a0wiUg&list=PLU6SqdYcYsfLoKyzF_dwxAQf8Ii6VC54
6. Double Integration - Change of Order of Integration | Cartesian & Polar https://www.youtube.com/watch?v=fXMyLYwBB3s&list=PLU6SqdYcYsfLoKyzF_dwxAQf8Ii6VC54&index=4

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: Engineering Physics	Code: 25COBS204								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	-	-	125

Prerequisites:

Fundamentals of Physics, basic of interference, polarization, de-Broglie hypothesis, semiconductor and ultrasonic.

Course Objectives:

1. To make the students understand and study the basic principles of Physics.
2. To provide firm grounding to the students in the concept of physics to resolve many engineering and technological problems.
3. To impart the knowledge of the fundamentals of physics to the students through hands on experiments and extend it to relevant engineering applications.

Course Outcomes: At the end of the course, Student will be able to -

CO1	Explain basics of interference and polarization connected to engineering applications
CO2	Make use of Laser technology and Optical fiber in various disciplines.
CO3	Outline the fundamentals of Quantum Physics and relate it to engineering applications
CO4	Apply basics of semiconductors for solving engineering problems.
CO5	Extend the understanding of Ultrasonic and NDT in engineering.
CO6	Interpret the use of nanoparticles and superconductors in the field of engineering.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Wave optics:</p> <p>Units and its conversion-Length, Mass, Velocity, Acceleration Momentum, Time, Temperature, Wavelength, Energy, Current, Voltage, Power, Intensity, Amplitude, Frequency, Pressure, Resistance, compressibility, resistivity, conductivity, Mobility, Angle.</p> <p>Interference- Interference in thin film of uniform thickness and its conditions, Engineering Applications – Ant-Reflection coating (ARC),</p> <p>Polarization- Polarization and its types, Malus law and Brewster's law (Simple numerical), Double refraction, Huygens's theory of double refraction, Differentiate between positive & negative crystal, Engineering applications of polarization: Liquid Crystal Display (LCD).</p>	5
2.	<p>Laser and Optical Fiber:</p> <p>Laser- Basic Principles of laser, Elements of Laser, Characteristics of laser, He-Ne laser (Gas laser), Applications of laser – Medical, Industrial and Holography-Recording.</p> <p>Optical fibers: Propagation of light (Acceptance angle, Acceptance cone, Numerical aperture), (Simple numerical). Types of optical fibers, Advantages of optical fiber communication, Applications of optical fiber in Medical,</p>	5

DEPARTMENT OF COMPUTER ENGINEERING

	Communication, Entertainment, Data Security	
3.	Quantum Physics: De Broglie hypothesis of matter waves, de Broglie wavelength for a particle accelerated by Kinetic Energy (K.E) and a charged particle accelerated by Potential difference (PD) "V", (Simple Numerical), Properties of matter waves, Heisenberg's uncertainty principle, Electron diffraction Experiment, Tunneling Effect and its engineering applications Scanning Tunneling Microscope (STM)	4
4.	Semiconductor Physics: Classification of solids on the basis of band theory, Fermi level and Fermi energy for metal and semiconductor, Position of Fermi level in extrinsic semiconductors (only diagram), Solar cell: principle, working, IV-characteristics, Efficiency and fill factor, Measures to improve efficiency of solar cell, Advantages and applications in environmental sustainability, Hall effect: derivation for Hall voltage and Hall coefficient (Simple numerical).	5
5.	Ultrasonic and Non-destructive Testing: Ultrasonic- Properties of ultrasonic waves, Generation of ultrasonic waves by inverse piezoelectric effect (using transistor) (Simple Numerical). Non- Destructive Testing (NDT) and its objectives, Difference between destructive testing and non- destructive testing, Ultrasonic flaw detection technique, Advantages of NDT (Simple numerical).	4
6.	Nanoparticles: Properties of nanoparticles (Optical, Electrical, Mechanical), Applications of nanotechnology (Electronics, Automobile, Medical). Superconductivity: Temperature dependence of resistivity, Properties of Superconductivity-Critical magnetic field (Simple Numerical), Meissner effect, Type I and Type II Superconductors, Principle-working of Superconducting Quantum Interface Device (SQUID), Engineering applications.	5
TOTAL		28

List of Experiments:**Perform any ten (10) experiment out of 15 and 15th is mandatory.**

1. Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of Plano-convex lens).
2. To verify Law of Malus.
3. Determination of refractive index using Brewster's law.
4. Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).
5. Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).
6. Determination of Planck's constant using available experimental setup.
7. To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).
8. To determine Hall coefficient and charge carrier density.
9. Determination of velocity of ultrasonic waves and compressibility of given liquid by using Ultrasonic Interferometer.
10. An experiment based on optical fiber.
11. To determine the numerical aperture of optical fiber of laser diode.
12. Temperature dependence characteristics of semiconductor.
13. To determine the band gap energy of a semiconductor sample using a PN junction diode.

DEPARTMENT OF COMPUTER ENGINEERING

14. To determine the unknown wavelength by using plane diffraction grating.

Text Books:

1. M. N. Avadhanulu and P.G. Kshirsagar, "Engineering Physics", S. Chand Publications.
2. S. O. Pillai, "Solid State Physics", New age International Publications.
3. J. J. Sakurai, "Modern Quantum Mechanics", Pearson Publication.
4. V K Mehta and Rohit Mehta, "Basic Electrical Engineering", S Chand Publications.
5. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press".

Reference Books:

1. H.D. Young and R.A. Freedman, "University Physics", Pearson Publication.
2. Resnick and Halliday, "Principles of Physics", John Wiley and Sons.
3. Jenkins and White, "Optics", Tata McGraw Hill.
4. Noson S. Yanofsky and Mirco A. Mannucci, "Quantum computing for computer scientists", Cambridge University Press

E-Resources:

1. NPTEL Course:
 - a) NPTEL lecture based on interference of polarized light by IIT Roorkee - https://youtu.be/e-4QK_JVsdu?si=gWIBt41dDgeABO8Y
 - b) NPTEL lecture based on Introduction of Polarization by IIT Roorkee - <https://youtu.be/fIVlzKB4bBQ?si=meWFP5matsopCABi>
 - c) NPTEL lecture based on Malus Law by IIT Roorkee – <https://youtu.be/iFG82I3nFA0?si=JCln6fJqGNw6ix5U>
 - d) NPTEL lecture based on Double Refraction by IIT Roorkee - <https://youtu.be/Pt5wvYyguq0?si=4mowxORZQXGXNxMW>
 - e) NPTEL lecture based on Semiconductor Physics by IIT Roorkee – <https://youtu.be/q7VIITSysMs?si=62lAMoJ2tMHKRiDH>
 - f) NPTEL lecture based on Introduction to superconductivity- <https://youtu.be/hGPA1g8fKug?si=FdYfJu6bf6u2zRe>
 - g) NPTEL lecture based on Meissner Effect- <https://youtu.be/EkNnxBakJMs?si=qRnSvPlD2NTe4rf->
2. Feynman lecture series: <https://www.feynmanlectures.caltech.edu/>
3. Concepts of Modern Physics, Arthur Beiser:
4. Lectures by Walter Lewin: <https://www.youtube.com/channel/UCiEHWhv0SBMpP75JbzJShqw>
5. Quantum Mechanics Lecture Series by Prof. H.C. Verma - https://www.youtube.com/watch?v=JFWuAQRZPjQ&list=PLWweJWdB_GuISnGkAafMpzzDBvTHg02At
6. Virtual Labs, Amrita University- <https://vlab.amrita.edu/?sub=1&brch=195>
7. Virtual Labs, IIT Kanpur- <https://bop-iitk.vlabs.ac.in/exp/energy-band-gap/simulation.html>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Digital Systems Design and Architecture					Code: 25COES203				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	-	-	125

Prerequisites:

Basic knowledge of number systems (binary, decimal), Understanding of fundamental physics related to electricity and circuits

Course Objectives:

1. To understand the fundamental principles of digital logic and its applications in circuit design
2. To design and analyze combinational and sequential circuits.
3. To familiarize students with state machines and algorithmic representation of sequential logic.
4. To introduce programmable logic devices and their applications in digital design.
5. To understand microprocessor architecture and its role in digital systems.
6. To gain knowledge of microcontroller architecture and its applications in embedded systems.

Course Outcomes:

CO1	Students will be able to design and implement combinational circuits using adders, multiplexers, and code converters.
CO2	Students will be able to design sequential circuits using flip-flops, registers, and counters.
CO3	Students will be able to represent and design digital systems using state machines and algorithmic state machines.
CO4	Students will be able to design combinational logic circuits using programmable logic devices (PLD).
CO5	Students will understand the architecture of the 8086 microprocessor and write basic programs using its instruction set.
CO6	Students will gain knowledge of microcontroller architecture and its applications in embedded system design.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Combinational Circuit Design:</p> <p>Digital Codes: Binary, BCD, Grey, Excess-3.</p> <p>Code Conversions: Binary to Grey, BCD to Excess-3</p> <p>Adders and Subtractors: Half adder, Full adder, Half subtractor, Full subtractor</p> <p>Multiplexer: Types of Multiplexer, Multiplexer Tree</p> <p>Demultiplexers/Decoders: Realization of Boolean functions using Multiplexer/ demultiplexer</p> <p>Parity Generator and Checker (Even & Odd), 1 & 2-bit Comparators.</p>	5
2.	<p>Sequential Circuit Design:</p> <p>Flip-Flops: SR, JK, D, T flip-flops, Preset & Clear operations, Truth Tables and Excitation Tables, Flip-Flop Conversions</p>	5

DEPARTMENT OF COMPUTER ENGINEERING

	Registers: Buffer registers, Shift registers (SISO, SIPO, PISO, PIPO) Counters: Asynchronous and Synchronous Counters, Ring counter, Johnson counter, Modulus counter (IC 7490)	
3.	Algorithmic State Machines: Introduction to Finite State Machines (FSM) and Algorithmic State Machines (ASM), ASM Charts: Notations, Construction, and Realization for Sequential Circuits. Sequence Generator and Sequence Detector	4
4.	Programmable Logic Devices (PLD): Introduction to PLDs: ROM, PLA, PAL , Designing Combinational Circuits using PLDs , Applications of PLDs in digital circuit design	4
5.	Microprocessor Architecture: Overview of Microprocessors and their role in digital systems Architecture of 8086 Microprocessor: Registers, Flags, Instruction Pointer Instruction Set: Data Movement, Arithmetic & Logic, Control Transfer Instructions Addressing Modes: Immediate, Direct, Indirect, Indexed, Register Addressing	5
6.	Microcontroller Architecture: Introduction to Microcontrollers and their applications ,Comparison between Microprocessors and Microcontrollers ,Overview of MCS-51 Architecture (8051 Microcontroller): Block Diagram, Memory Organization, Port Structure ,Timers, Serial Communication Modes, Interrupt Structure ,Overview of Instruction Set and Applications in Embedded Systems	5
TOTAL		28

List of Experiments:**GROUP A**

1. Design and implement code converters- Binary to Gray and BCE to Excess-3
2. Design and implement of Half Adder/ Full Adder using a) Basic Gates b) Universal Gates
3. Realization of Boolean function using Multiplexer 74151/74153, Demultiplexer 74154 / 74138.
4. Design and implementation of 1-bit comparator and 2-bit comparator
5. Design and implementation of parity generator

GROUP B (Any Three)

6. Verify characteristic tables of SR, JK, D & T Flip-flop
7. Design and implementation of Asynchronous/synchronous 3-bit counter using D flip-flop
8. Design and implement of Sequence generator/ detector using JK flip-flop
9. Design and implement MOD-10 counter using IC7490

GROUP C

10. Study of SISO, SIPO, PISO & PIPO shift register
11. Study of Microcontroller 8051: Features, Architecture & Programming Model

DEPARTMENT OF COMPUTER ENGINEERING

Text Books:

1. "Digital Logic and Computer Design" by M. Morris Mano, Michael D. Ciletti
2. "Modern Digital Electronics", by R.P.Jain
3. "Microprocessor Architecture, Programming, and Applications with the 8085" by Ramesh Gaonkar
4. "The 8051 Microcontroller and Embedded Systems" by Muhammad Ali Mazidi, Janice Mazidi, and Rolin McKinlay
5. "Digital Design: With an Introduction to the Verilog HDL" by M. Morris Mano and Michael D. Ciletti

Reference Books:

1. "Digital Principles and Applications" by Donald P. Leach, Albert Paul Malvino, and Goutam Saha
2. "Microprocessor and Interfacing" by Douglas V. Hall

E-Resources:

1. NPTEL Course on Digital Circuits
2. NPTEL Course on Microprocessors and Microcontrollers

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)				Semester: II					
Course: Foundations of C++ Programming				Code: 25COES204					
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	-	-	03	40	60	-	-	-	100
Prerequisites:									
Basic Programming Concepts, Procedural Programming Knowledge, Pointers and Memory Management, Mathematical Foundations, Basic Understanding of Algorithms									
Course Objectives:									
<ol style="list-style-type: none"> 1. To introduce the fundamental programming paradigms and demonstrate the shift from procedural to object-oriented programming. 2. To explore key OOP principles such as classes, inheritance, polymorphism, and encapsulation. 3. To provide hands-on experience in solving problems using C++. 4. To enable students to handle advanced features like operator overloading, file handling, templates, and exception handling. 5. To strengthen the ability to design and implement robust programs following object-oriented methodologies. 									
Course Outcomes:									
CO1	Students will be able to differentiate between various programming paradigms and apply basic object-oriented concepts in C++								
CO2	Students will understand and implement different types of inheritance using C++								
CO3	Students will be able to implement static and dynamic polymorphism in C++ programs								
CO4	Students will develop generic programs using templates and manage exceptions in C++ programs.								
CO5	Students will implement file handling techniques and manipulate file data using C++								
CO6	Students will handle advanced OOP concepts such as dynamic memory management and STL usage.								
Course Contents:									
Unit	Description							Duration (Hrs.)	
1.	Introduction to Programming Paradigms: Role and importance of programming languages, Characteristics of good programming languages Overview of programming paradigms: Procedural, Object-Oriented, Logical, and Functional, Comparison between Procedural and Object-Oriented Programming (OOP). Features of Object-Oriented Programming (OOP): Abstraction, Encapsulation, Inheritance And Polymorphism. C++ Syntax: Data types, Variables, Operators, Flow Control, Arrays, Pointers C++ Classes: Private, Public, Constructors, Destructors, Member Data, Member Functions							6	
2.	Inheritance: Concept of Class Hierarchy and Derived Classes,							8	

DEPARTMENT OF COMPUTER ENGINEERING

	Types of Inheritance: Single, Multiple, Multilevel, and Hybrid Inheritance Role of Virtual Base Class, Constructor and Destructor Execution in Derived Classes, Base Class Initialization using Derived Class Constructors	
3.	Polymorphism: Static Binding and Dynamic Binding, Static Polymorphism: Function Overloading, Ambiguity in Function Overloading, Operator Overloading (Unary and Binary Operators), Operator Overloading Using Friend Functions, String Manipulation using Operators, Dynamic Polymorphism: Base Class Pointers, Object Slicing, Method Overriding, Virtual Functions, Pure Virtual Functions, Abstract Classes	7
4.	Generic Programming & Exception Handling: Introduction to Generic Programming, Function Templates, Class Templates, Templates with Multiple Parameters, Exception Handling: Fundamentals, Multiple Catch Blocks, Nested try Statements, Uncaught Exceptions, Stack Unwinding, throw and rethrow	7
5.	File Handling in C++: Introduction to File Handling and File Stream Classes, File Operations: Opening, Closing Files, Detecting End of File (EOF), File Modes, File Pointer Manipulation and Sequential I/O Operations, Random Access to Files, Error Handling during File Operations	7
6.	Advanced Object-Oriented Concepts: Operator Overloading: Friend Functions, Assignment Operators Dynamic Memory Management: new and delete operators, Smart Pointers and Reference Counting, Introduction to Standard Template Library (STL): Containers, Iterators, Algorithms, Real-world Case Studies in Object-Oriented Design.	7
TOTAL		42

Text Books:

1. E. Balagurusamy, Object-Oriented Programming with C++, McGraw Hill.
2. Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley
3. Robert Lafore, Object-Oriented Programming in C++, SAMS Publishing

Reference Books:

1. Herbert Schildt, C++: The Complete Reference, McGraw Hill
2. Stanley B. Lippman, C++ Primer, Addison-Wesley
3. Scott Meyers, Effective C++, Addison-Wesley

E-Resources:

1. NPTEL: https://onlinecourses.nptel.ac.in/noc21_cs02/preview
2. W3Schools: <https://www.w3schools.com/cpp/>
3. Coursera: <https://www.coursera.org/learn/object-oriented-cpp?specialization=hands-on-cpp>
4. GeeksforGeeks: <https://www.geeksforgeeks.org/c-plus-plus/>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Fundamentals of Computer Systems and Networking					Code: COPC201				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	-	-	125

Prerequisites:

Basic knowledge of computers and binary systems.

Course Objectives:

1. To understand the architecture and functioning of computer systems.
2. To explore fundamental networking concepts and technologies.
3. To develop foundational knowledge of operating systems and computer organization.
4. To learn about various networking models, protocols, and data communication methods.
5. To understand the role of hardware and software in computing and networking.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand the basic components and organization of a computer system and the role of operating systems in managing hardware and software.
CO2	Gain insights into the organization and architecture of a computer, including CPU functioning and memory hierarchy.
CO3	Understand basic networking concepts, data communication modes, network topologies, and the types of networks.
CO4	Describe the OSI and TCP/IP models, along with understanding key networking protocols and addressing techniques.
CO5	Understand the basic concepts of network security, including encryption, firewalls, and security protocols to protect communication.
CO6	Explore the emerging trends in computer systems and networking, including cloud computing, IoT, and advancements in network technologies

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Introduction to Computer Systems:</p> <p>Overview of Computers: History of computers (evolution and key milestones), Types of computers: Analog, Digital, And Hybrid.</p> <p>Applications of Computers: In education, healthcare, business, entertainment, and other fields.</p> <p>Components of a Computer System: Hardware vs. Software, Basic hardware components (CPU, memory, storage, input/output devices).</p> <p>Introduction to Operating Systems: Functions (process, memory, file system, device management), Types (batch, time-sharing, real-time, distributed, embedded), Structure (Kernel, Shell, System Utilities).</p>	4
2.	Computer Architecture and Organization: Basic Structure of a Computer: Von Neumann architecture, instruction cycle.	4

DEPARTMENT OF COMPUTER ENGINEERING

	CPU Organization: ALU, Registers, Control Unit. Buses and Interfacing: Overview of data transfer methods (bus organization, control lines). Memory Architecture: Memory hierarchy, RAM, ROM, Cache, Virtual Memory. I/O Systems: I/O devices, I/O addressing, and basic concepts of interrupts and DMA. Display Technologies: Explore different display types (CRT, LCD, LED), display technology fundamentals, resolution, and refresh rate	
3.	Data Communication and Networking Fundamentals: Data Communication: Types of data transmission, Modes (Simplex, Half-duplex, Full-duplex), Transmission media (Wired, Wireless) Network Topologies: Bus, Star, Ring, Mesh, Hybrid. Types of Networks: LAN, WAN, MAN, PAN Overview of Networking Devices: Switches, Routers, Modems, Hubs, Repeaters Introduction to the Internet: Basics of how the internet works, Internet protocols	5
4.	Networking Models and Protocols: OSI Model: Layers and functions. TCP/IP Model: Layers and comparison with OSI. IP Addressing: IPv4, IPv6, Subnetting, CIDR. Network Protocols: HTTP, FTP, SMTP, DNS, DHCP, ICMP. Packet Switching vs. Circuit Switching: Fundamental differences and use cases.	5
5.	Introduction to Network Security: Fundamentals of Network Security: Threats, Attacks, Vulnerabilities. Cryptography Basics: Symmetric and Asymmetric Encryption, hashing. Firewalls and Intrusion Detection Systems (IDS): Working principles of firewalls and intrusion detection systems. Security Protocols: SSL/TLS, IPSec, VPN. Authentication and Access Control: Overview of methods such as passwords, biometrics, multi-factor authentication.	5
6.	Emerging Trends in Computer Systems and Networking: Cloud Computing: Basics, service models (IaaS, PaaS, SaaS), deployment models (public, private, hybrid). Virtualization: Concept of virtual machines, hypervisors. Internet of Things (IoT): Architecture, Applications, Challenges. 5G Networking: Features, use cases, and its role in modern communications. Edge and Fog Computing: Concepts and Applications. Data Centers: Fundamentals, architectures, and their role in modern computing.	5
TOTAL		28

List of Experiments:**Group A: Fundamentals of Computer Systems: (Any 8)**

1. Disassemble and identify key components of a computer system (CPU, RAM, motherboard, storage, etc.). Discuss functionalities and basic maintenance practices.
2. Use a simulator to demonstrate the instruction execution process in a CPU and explore the memory hierarchy (RAM, cache, virtual memory). **Open-source software:** SimulIDE, Little Man Computer Simulator.
3. Create a diagram of a motherboard, labeling key components (CPU socket, RAM slots,

DEPARTMENT OF COMPUTER ENGINEERING

expansion slots, connectors) and explaining their functions. **Open-source software:** [Dia](#), [Fritzing](#).

4. Install and configure an expansion card (e.g., graphics card or network card) in a computer.
5. Compare HDD and SSD by conducting performance tests (e.g., read/write speed tests).

Open-source software: CrystalDiskMark, [KDiskMark \(Linux\)](#)

6. Install an operating system (e.g., Windows, Linux) on a computer.

Open-source software: [Ubuntu](#), [Fedora](#).

7. Benchmark a GPU using a graphics-intensive application and analyze its performance.

Open-source software: Unigine Heaven Benchmark, GLMark2

8. Compare different display technologies (CRT, LCD, LED) in terms of resolution, refresh rate, and overall quality.

Open-source software: [HWiINFO](#), Speccy.

9. Diagnose and resolve a hardware or software problem in a computer system.

Open-source software: [HWiINFO](#), Speccy.

10. Install and configure antivirus software, demonstrating its features.

Open-source software: [ClamAV](#).

Group B: Fundamentals of Networking: (Any 5)

1. Set up a small LAN and demonstrate data transfer between devices.

Open-source software: [Wireshark](#), EtherApe

2. Configure a switch and a router for a network, demonstrating their roles in data communication.

Open-source software: Cisco Packet Tracer, [GNS3](#).

3. Simulate data transfer using the TCP/IP model and analyze packet data.

Open-source software: [Wireshark](#).

4. Create a presentation on common malware and viruses, including preventive measures and real-world examples.

5. Research and create a report on different data center topologies and architectures (e.g., star, mesh, tree).

6. Conduct a case study of a specific data center or take a virtual tour of a data center, highlighting key components and their functions.

Text Books:

1. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface," Morgan Kaufmann, 2017.
2. Behrouz A. Forouzan, "Data Communications and Networking," McGraw-Hill, 2017.
3. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach," Pearson, 2020.
4. William Stallings, "Cryptography and Network Security: Principles and Practice," Pearson, 2017.
5. Thomas Erl, "Cloud Computing: Concepts, Technology & Architecture," Prentice Hall, 2013.

Reference Books:

1. Andrew S. Tanenbaum, "Modern Operating Systems," Pearson, 2015.
2. M. Morris Mano, "Computer System Architecture," Pearson, 2013.
3. Douglas E. Comer, "Internetworking with TCP/IP," Pearson, 2018.

DEPARTMENT OF COMPUTER ENGINEERING

4. Jerome H. Saltzer and M. Frans Kaashoek, "Principles of Computer System Design: An Introduction," Morgan Kaufmann, 2009.

E-Resources:

1. <https://nptel.ac.in/courses/106103068>
2. <https://nptel.ac.in/courses/106105081>
3. <https://nptel.ac.in/courses/106104449>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: C++ Programming Laboratory	Code: 25COVS202								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	25	-	-	25

Prerequisites:

Basic understanding of programming logic, flowcharts, and pseudocode.

Fundamental knowledge of data types, variables, and operators

Course Objectives:

1. To introduce the concepts of object-oriented programming using C++.
2. To understand the syntax and structure of C++ programs.
3. To develop problem-solving skills by applying C++ programming constructs.
4. To learn the implementation of classes, objects, constructors, and various OOP features.
5. To explore advanced C++ concepts like operator overloading, inheritance, and exception handling.
6. To gain hands-on experience in memory management and data structure implementation using C++.

Course Outcomes:

CO1	Write, compile, and execute basic C++ programs for simple problem-solving
CO2	Implement object-oriented programming principles like classes, objects, and inheritance in C++
CO3	Develop programs that perform complex operations such as operator overloading and memory management.
CO4	Apply dynamic memory allocation and exception handling techniques in C++ programs
CO5	Solve real-world problems by implementing matrix operations and other complex data structures using C++.
CO6	Demonstrate the use of pointers, constructors, and destructors in C++ applications

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Basics of C++ Programming: Introduction to C++ syntax, Input/Output operations. Control structures: if-else, switch-case, loops (for, while, do-while). Arrays and string handling in C++	9
2.	Basic Problem-Solving with C++: Number reversal and factorial calculation, Prime number generation Finding largest and smallest elements in a list.	9
3.	Dynamic Memory Allocation and Sorting: Arrays and dynamic memory management using new and delete. Sorting algorithms and their implementation in C++.	9
4.	Object-Oriented Programming: Class declaration and member functions. Constructors: default, parameterized, and copy constructors. Implementing a class STUDENT with data members and member functions.	9

DEPARTMENT OF COMPUTER ENGINEERING

5.	Advanced Concepts in C++: Operator overloading (unary and binary). Function overloading and friend functions. Pointers and dynamic object access.	10
6.	Inheritance, Exception Handling, and Matrix ADT: Inheritance: Single, Multiple, Multilevel, Hierarchical. Matrix operations using the Matrix ADT class. Exception handling and constructors/destructors.	10
TOTAL		56

List of Experiments: (Any Nine experiments from list 1 to 11 are mandatory and an experiment 12 is mandatory)

1	Introduction to C++ Programming Write basic C++ programs demonstrating: <ul style="list-style-type: none"> • Input/Output operations • Class and object definitions • Control statements (if-else, switch-case) • Looping (for, while, do-while) • Array manipulation • String handling
2	Write a C++ program to calculate the factorial of a given number
3	Write a C++ program to generate all prime numbers between 1 and n, where n is provided by the user.
4	Sorting and Dynamic Memory Allocation: (Any one) <ol style="list-style-type: none"> a) Write a C++ program to sort a list of numbers in ascending order. b) Write a C++ program to illustrate dynamic memory allocation using the new and delete keywords
5	Class Definitions and Constructors: <ol style="list-style-type: none"> a) Write a C++ program illustrating class declaration, definition, and member access. b) Write a C++ program to demonstrate the use of default, parameterized, and copy constructors.
6	Implementing a Class STUDENT <ol style="list-style-type: none"> a) Write a C++ program to implement a class COURSE with the following members: Data Members: <ul style="list-style-type: none"> • CourseName: Name of the course • CourseCode: Unique code for the course • Credits: Credits assigned to the course • StudentList[]: Array to store names of enrolled students • MaxStudents: Maximum number of students that can enroll in the course Member Functions: <ul style="list-style-type: none"> • initialize(): Assign initial values to the course (CourseName, CourseCode, Credits, MaxStudents) • enrollStudent(): Enroll a new student in the course if the course is not full. • displayCourseInfo(): Display the course details along with the enrolled students. • totalEnrolled(): Calculate and display the total number of students enrolled in the course.

DEPARTMENT OF COMPUTER ENGINEERING

7	Operator and Function Overloading: a) Write a C++ program demonstrating: <ul style="list-style-type: none">• Operator overloading for unary and binary operators.• Function overloading for multiple function definitions. b) Write a C++ program to demonstrate friend functions and friend classes.
8	Pointers and Object Access a) Write a C++ program to dynamically allocate memory for an object of the class EMPLOYEE and access its members using pointers. b) Write a C++ program to generate a Fibonacci series using a constructor to initialize data Members.
9	Matrix ADT Implementation Write a C++ program to implement a matrix Abstract Data Type (ADT) using a class. The operations supported by this ADT are: <ul style="list-style-type: none">• Reading a matrix• Addition of matrices• Subtraction of matrices• Printing a matrix.
10	Inheritance in C++: Write C++ programs to demonstrate the following forms of inheritance: (a) Single Inheritance (b) Multiple Inheritance (c) Multilevel Inheritance (d) Hierarchical Inheritance
11	Constructors and Base Class Pointer a) Write a C++ program to illustrate the order of execution of constructors and destructors when a new class is derived from more than one base class. b) Write a C++ program to invoke derived class members through a base class pointer.
12	Exception Handling in C++: a) Write a C++ program containing a possible exception. Use a try block to throw the Exception and a catch block to handle it. b) Write a C++ program to demonstrate catching all exceptions using generic exception Handlers.
Reference Books:	
1. "Programming: Principles and Practice Using C++" by Bjarne Stroustrup 2. "Effective C++: 55 Specific Ways to Improve Your Programs and Designs" by Scott Meyers 3. "Accelerated C++: Practical Programming by Example" by Andrew Koenig and Barbara E. Moo	
E-Resources:	
1. C++ Programming Tutorial (NPTEL)	

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Professional Development - II					Code: 25COCC203				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	25	-	-	25

Course Objectives:

1. To introduce students on professional development skills and its importance in building personal and professional life.
2. To bring in self-awareness and realization of Values, Self-discipline and self-grooming for betterment of life and contribution to our Society.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand the interpersonal skills importance and finding skill gaps for development.
CO2	Know how to be effective in managing our time with application of simple tools & techniques.
CO3	Know the effective components of teamwork and how to be effective in our role for team performance and goals.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Interpersonal Skills: Understanding on IP skills; Essentials of IP; How to develop IP skills.	24
2.	Time management: What is time management? Time study and mapping; Knowing the time management tools & techniques; How to apply tools & techniques for effective time management; Self-evaluation.	16
3.	Teamwork: Team and Individual thinking; Characteristics of Teamwork; Importance at work profession; Benefits	16
TOTAL		56

Text Books:

1. Dr. P. K. Sinha, "Interpersonal Skills for Managers", Sage Publications.

Reference Books:

1. John C. Maxwell and Les Parrott, "25 Ways to Win with People", Thomas Nelson, 2013.
2. Robert Bolton, "People Skills: How to Assert Yourself, Listen to Others, and Resolve Conflicts", Touchstone, 1986.
3. Chris Bailey, "The Productivity Project: Accomplishing More by Managing Your Time, Attention, and Energy", Crown Business, 2016.
4. Jon Gordon, "The Power of a Positive Team: Proven Principles and Practices that Make Great Teams Great", Wiley, 2017.

E-Resources:

1. Coursera - "Improving Your Interpersonal Skills", <https://www.coursera.org/learn/interpersonal-skills>
2. Coursera - "Leading Teams", <https://www.coursera.org/learn/leading-teams>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: Liberal Learning – II (Guitar)	Code: 25COCC204A								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Guitar musical instrument.

Course Objectives:

1. To enhance guitar skills through intermediate fingerpicking, lead techniques, and genre exploration, culminating in a polished final performance.

Course Outcomes: After completion of this course, students will be able to -

CO1 Execute intermediate fingerpicking techniques with precision and rhythm.

CO2 Apply advanced lead guitar techniques and pentatonic scales effectively.

CO3 Perform confidently across various genres including blues, rock, folk, and classical.

CO4 Deliver a polished final performance through focused practice and preparation.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Rhythm and Timing.	2
2.	Time Signatures.	2
3.	Understanding Basic Rhythms.	2
4.	Circle of Fifths.	2
5.	Introduction to Minor Scales.	2
6.	Advanced Chord Shapes.	2
7.	Introduction to Lead Techniques.	2
8.	Introduction to Pentatonic Scale.	2
9.	Practice and Review.	2
10.	Exploring Different Genres.	2
11.	Final Project Planning.	2
12.	Intensive Practice.	2
13.	Pre-Performance Preparation.	2
14.	Final Performance.	2
TOTAL		28

Text Books:

1. David Hodge, "Guitar Theory", DK Publishing.

Reference Books:

1. Russ Shipton, "The Complete Guitar Player", Published by Wise.
2. Vincent Ong, Alfred Khp, "Classical Guitar Advanced Studies Repertoires", Dynamic Publication.

E-Resources:

1. <https://www.youtube.com/watch?v=BBz-Jyr23M4>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Liberal Learning – II (Singing)					Code: 25COCC204B				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music in singing.

Course Objectives:

1. To develop advanced singing techniques and ear training through Indian classical music, focusing on repertoire selection, effective rehearsal, and performance presentation.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master legato, staccato, and advanced vocal methods in Indian classical music.
CO2	Improve musical ear through rigorous training and diverse classical repertoire.
CO3	Apply effective rehearsal strategies to prepare and present a polished performance.
CO4	Deliver a well-executed performance of selected Indian classical pieces with artistic expression

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Vibrato and Ornamentation.	2
2.	Range Extension.	2
3.	Legato and Staccato.	2
4.	Advanced Ear Training.	2
5.	Basics of Indian Semi Classical Music.	2
6.	Improvisation Techniques.	2
7.	Selecting Repertoire for Performance.	2
8.	Rehearsal Techniques.	2
9.	Dress Rehearsal.	2
10.	Final Performance.	2
11.	Performance Review.	2
12.	Exploring New Repertoire.	2
13.	Advanced Techniques and Styles.	2
14.	Course Recap and Future Directions.	2
TOTAL		28

Text Books:

1. Dr. Theodore Dimon, "Anatomy of the Voice, This Is a Voice".

Reference Books:

1. Richard Miller, "The Structure of Singing", Schirmer Books, London.
2. Jennifer Hamady, "The Art of Singing", Published by Hal Leonard.

E-Resources:

1. <https://www.youtube.com/watch?v=4hNq9qykOyE>
2. <https://www.youtube.com/watch?v=b14gkmECz-Y>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)						Semester: II			
Course: Liberal Learning – II (Cinematography)						Code: 25COCC204C			
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

A basic understanding of film theory, Camera operation, Lighting techniques and visual storytelling is essential for cinematography.

Course Objectives:

1. To master videography by learning camera techniques, shooting methods, and editing, culminating in a final project showcasing advanced skills in video production.

Course Outcomes: After completion of this course, students will be able to -

CO1	Operate camera components and techniques for steady, sharp video shooting.
CO2	Apply rule of thirds, framing, and stabilization methods effectively.
CO3	Use advanced editing tools and sound design for polished video projects.
CO4	Deliver a comprehensive final video project demonstrating learned skills.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Videography	2
2.	Understanding camera components (lens, sensor, viewfinder)	2
3.	Techniques for steady shooting (tripods, handheld, gimbals)	2
4.	Understanding the rule of thirds, leading lines, and framing in video	2
5.	In-depth explanation of the exposure triangle: aperture, shutter speed, and ISO	2
6.	Importance of audio in videography	2
7.	Techniques for achieving sharp focus	2
8.	Motion and Stabilization	2
9.	Storyboarding and Planning	2
10.	Filming Techniques	2
11.	Introduction to Video Editing	2
12.	Introduction to advanced editing tools (color correction, audio editing, effects)	2
13.	Sound Design and Mixing	2
14.	Final Project Presentation and Review	2
TOTAL		28

Text Books:

1. Tania Hoser, "Introduction to Cinematography", Taylor & Francis.

Reference Books:

1. Anat Pick, "Screening Nature", Berghahn Books.
2. Blain Brown, "Cinematography: Theory and Practice", Taylor & Francis.

E-Resources:

1. <https://youtu.be/V7z7BAZdt2M?si=to4yQ46zEKRbxK0m>
2. https://youtu.be/WXdAX0No2hM?si=GZu_mJsmyJ7NGnAU

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)				Semester: II					
Course: Liberal Learning – II (Dance)				Code: 25COCC204D					
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Good stamina, flexibility and familiarity with simple rhythmic patterns and beats.

Course Objectives:

1. To develop advanced dance techniques, expressive skills, and performance readiness in Indian classical dance, culminating in a final performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Develop advanced techniques in footwork, postures, and hand gestures, with a focus on fluidity and expression.
CO2	Embody various characters and emotions through in-depth exploration of Abhinaya (expressional dance).
CO3	Execute learned dance pieces with precision, synchronization, and advanced rhythmic variations.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Character Portrayal.	2
2.	Rehearsal and Feedback.	2
3.	Advanced Footwork and Postures.	2
4.	Advanced Hand Gestures and Movements.	2
5.	Rhythmic Variations and Combinations.	2
6.	Rehearsal of Dance Piece.	2
7.	Performance Techniques.	2
8.	Integrating Steps and Expressions.	2
9.	Full Dress Rehearsal.	2
10.	Improvisation and Creative Movement.	2
11.	Corrections and Adjustments.	2
12.	Mini Performance.	2
13.	Introduction to Abhinaya in Depth.	2
14.	Preparing a New Short Dance Item.	2
TOTAL		28

Text Books:

1. Kapila Vatsyayan, "Indian Classical Dance", Publications Division Ministry of Information & Broadcasting.

Reference Books:

1. Shubhada Varadkar, "The Glimpse of Indian Classical Dance", Krimiga Books, Krimiga Content Development Pvt. Ltd.

E-Resources:

1. https://youtu.be/VP2jLLk8_jA?si=zg6_muy1w7jE5mbi
2. <https://youtu.be/xZEP4XupwJA?si=YBt3RmcHxCrc2JSr>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II
Course: Liberal Learning – II (Synthesizer/Keyboard)	Code: 25COCC204E
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)
Lecture	Practical
-	02
Credit	CIE
01	-
ETE	TW
-	25
OR	PR
-	-
Total	25

Prerequisites:

Basic knowledge of Indian classical music and Keyboard musical instrument.

Course Objectives:

1. To develop advanced musical skills through complex progressions, improvisation, and composition, culminating in a polished performance and mastery of selected repertoire.

Course Outcomes: After completion of this course, students will be able to -

CO1 Apply complex chord progressions and advanced scales effectively in performance.

CO2 Demonstrate proficiency in improvisation and advanced chord voicings.

CO3 Perform selected repertoire with refined technique and stage presence.

CO4 Successfully showcase learned skills through a polished recital or performance.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to more complex progressions (e.g., ii-V-I)	2
2.	Basics of improvisation	2
3.	Learning advanced scales (e.g., blues scale, pentatonic scale)	2
4.	Learning advanced chord voicings and inversions	2
5.	Advanced Arpeggios and Runs	2
6.	Basics of composing music	2
7.	Initial practice on selected repertoire	2
8.	Focused practice on repertoire pieces	2
9.	Understanding stage presence and performance techniques	2
10.	Final adjustments and practice on repertoire	2
11.	Attending or reviewing a masterclass	2
12.	Receiving personalized feedback on playing	2
13.	Dress rehearsal for recital or performance	2
14.	Showcasing learned skills and pieces	2
		TOTAL 28 hrs.

Text Books:

1. Chuan C. Chang, Fundamentals of Piano Practice, Createspace Independent Publishing Platform

Reference Books:

1. Michael Rodman, "Keyboard for the Absolute Beginners", Alfred Publishing.
2. Davis Dorrough, "Piano Scales".

E-Resources:

1. https://youtu.be/2mPS-2guHVo?si=8X_4KKezIdrMejLH
2. <https://youtu.be/tEtukfFv3Wk?si=2iJ8wdD0dfjWauPb>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II
Course: Liberal Learning – II (Basketball)	Code: 25COCC204F
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)
Lecture	Practical
-	02
Tutorial	Credit
-	01
CIE	ETE
-	-
TW	OR
25	-
PR	Total
-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To master advanced basketball skills, strategies, and mental conditioning to excel in team play, complex scenarios, and tournament preparation.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate mastery of advanced dribbling, passing, shooting, and defensive techniques.
CO2	Apply complex defensive systems, advanced team play, and game strategies in mixed scenarios.
CO3	Develop the mental toughness, conditioning, and strategic insights needed for successful tournament performance

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Advanced Dribbling Techniques	2
2.	Advanced Passing Techniques	2
3.	Advanced Shooting Techniques	2
4.	Advanced Defense Techniques	2
5.	Position Specific Training	2
6.	Conditioning & Strength Training	2
7.	Mental Toughness & Focus	2
8.	Advance Team Play	2
9.	Complex Defensive System	2
10.	Mixed Scenarios & Situational Drills	2
11.	Tournament Preparation	2
12.	Advance Game Play & Strategy	2
13.	Mastery & Final Assessment	2
14.	Final Scrimmage	2
TOTAL		28

Text Books:

1. K.K. Sharma, "Basketball: Skills and Drills", Sports Publications

Reference Books:

1. Dr. P.K. Kher, "Basketball Coaching: A Complete Guide", Khel Prakashan
2. S. Reddy, "The Ultimate Guide to Basketball Training", Blue Rose Publisher

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Liberal Learning – II (Cricket)					Code: 25COCC204G				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop advanced cricket skills and strategies in batting, bowling, and fielding, with a focus on mental conditioning, tactical execution, and competitive performance through intensive practice and match simulations.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate advanced techniques in batting, bowling, and fielding, including targeted drills and intensive practice.
CO2	Apply batting and bowling strategies, and execute tactical plans during match simulations and competitive play.
CO3	Develop strong mental conditioning and teamwork skills, preparing for high-performance in competitive matches and final assessments.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Batting Strategies.	2
2.	Bowling Strategies.	2
3.	Fielding Strategies.	2
4.	Match Simulations and Tactical Execution.	2
5.	Targeted Skill Improvement.	2
6.	Mental Conditioning.	2
7.	Intensive Match Simulations.	2
8.	Advanced Batting Drills.	2
9.	Advanced Bowling Drills.	2
10.	Fielding and Wicket keeping in Game Conditions.	2
11.	Game Analysis and Strategy Sessions.	2
12.	Final Skill Polishing.	2
13.	Teamwork and Communication.	2
14.	Competitive Matches and Final Assessments.	2
TOTAL		28

Text Books:

1. Sanjay Manjrekar, "Cricket Fundamentals", Orient BlackSwan
2. Ravi Shastri, "Winning Cricket: Skills and Strategies", Notion Press

Reference Books:

1. Sachin Tendulkar, "Playing It My Way", Hachette India
2. Rahul Dravid, "Cricket: The Game of Life", Penguin India

E-Resources:

1. Sports and Performance Nutrition, IIT Madras,
https://onlinecourses.nptel.ac.in/noc24_hs82/preview

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: Liberal Learning – II (Rifle and Pistol Shooting)	Code: 25COCC204H								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To achieve advanced proficiency in rifle shooting through specialized training, technical refinement, and mental preparation for competitive performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master advanced rifle shooting techniques and positions to achieve higher scores.
CO2	Develop strong mental preparation and focus techniques for peak performance and overcoming technical hurdles.
CO3	Gain specialized training and match practice, preparing them for ISSF events and advanced shooting challenges.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Understand and learning about advance rifle position	2
2.	Advance technical knowledge	2
3.	Advance Technique Refinement	2
4.	Learning about advance shooting and technics for achieving score	2
5.	Specialized Training	2
6.	Mental Preparation and Focus	2
7.	Peak Performance and analyses	2
8.	Advanced Skills Development	2
9.	Tactical Applications and working about single shoot	2
10.	Advanced Challenges and Readiness	2
11.	Review and Consolidation	2
12.	Focus on technical and mental hurdles	2
13.	Person to person attention	2
14.	Match practice and preparation as per ISSF event	2
TOTAL		28

Reference Books:

1. David Watson, "ABCs of Rifle Shooting", Gun Digest (Imprint of KP Books), 2014

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Liberal Learning – II (Volleyball)					Code: 25COCC204I				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To achieve advanced proficiency in volleyball by mastering complex techniques, strategic systems, and mental conditioning, while preparing for competitive play and tournament scenarios.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate expertise in advanced serving, spiking, setting, and blocking techniques tailored to specific positions.
CO2	Implement complex offensive and defensive systems and adapt to mixed scenarios through situational drills and gameplay.
CO3	Develop mental toughness, conditioning, and strategic insights necessary for successful tournament preparation and performance.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Advanced Serving Techniques	2
2.	Advanced Spiking Techniques	2
3.	Advanced Setting Techniques	2
4.	Advanced Blocking Techniques	2
5.	Position – Specific Training	2
6.	Conditioning & Strength Training	2
7.	Mental Toughness & Focus	2
8.	Game Analysis & Feedback	2
9.	Complex Offensive System	2
10.	Complex Defensive System	2
11.	Mixed Scenarios & Situational Drills	2
12.	Advanced Gameplay & Strategies	2
13.	Review & Reinforcement	2
14.	Tournament Preparation	2
TOTAL		28

Text Books:

1. Jitendra Kumar, "The Complete Guide to Volleyball", Blue Rose Publisher

Reference Books:

1. N. Ramachandran, "Volleyball: Steps to Success", Sports Publication

E-Resources:

1. <https://coachtube.com/course/volleyball/volleyball-for-beginners/7004>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)					Semester: II				
Course: Liberal Learning – II (Football)					Code: 25COCC204J				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance players' technical skills, tactical understanding, physical fitness, teamwork, and sportsmanship, fostering a comprehensive understanding and appreciation of the game.

Course Outcomes: After completion of this course, students will be able to -

CO1	To explain key concepts of transition play, positional drills, and the importance of endurance and stamina in football.
CO2	Apply advanced tactics during simulation matches, analyze high-pressure situations.
CO3	Students will design a game week routine that covers match preparation, mental and physical readiness, and post-match analysis, evaluating its impact on team performance and skills.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Transition Play.	2
2.	Positional Drills.	2
3.	Endurance and Stamina.	2
4.	Video Analysis and Feedback.	2
5.	Advanced Tactics and Strategy.	2
6.	High-Pressure Situations.	2
7.	Leadership and Team Roles.	2
8.	Refining Skills and Tactics.	2
9.	Match Preparation.	2
10.	Mental and Physical Preparation.	2
11.	Game Week Routine.	2
12.	Post Goalkeeper Training.	2
13.	Post-Match Analysis and Recovery.	2
14.	Simulation Matches.	2
TOTAL		28

Text Books:

1. Srinivasan J. B, "Football Coaching: A Comprehensive Guide", Sports Publishing.

Reference Books:

1. Rob Ellis, "The Complete Guide to Coaching Soccer", Meyer & Meyer Sport.

E-Resources:

1. Udemy – Soccer Courses - <https://www.udemy.com/topic/soccer/>

DEPARTMENT OF COMPUTER ENGINEERING

Program: B. Tech. (Computer Engineering)	Semester: II								
Course: IT Proficiency	Code: 25COAE201								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	25	-	-	25

Prerequisites:

Basic Computer Skills

Course Objectives:

Develop proficiency in essential office software and tools, including MS Word, MS Excel, MS PowerPoint, and LaTeX, to create, analyze, and present professional documents and data effectively, while understanding ethical internet use and leveraging AI tools.

Course Outcomes:

CO1	Create and format professional documents using MS Word.
CO2	Organize and analyze data using Excel's features.
CO3	Apply advanced Excel functions, pivot tables, charts, and macros to analyze and secure data.
CO4	Create effective presentations using MS PowerPoint features.
CO5	Create Professional Documents Using LaTeX.
CO6	Apply ethical practices in using internet resources and AI tools.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Basics of Computer and MS Word: Awareness of computer Basics MS-Word: Text Basics, Text Formatting and saving file, Working with objects, Header & footers, Working with bullets and numbered lists, Tables, Styles and Content, Merging documents, Sharing and maintaining document, Proofing the document, Printing.	08
2.	MS-Excel: Introduction to Excel, Formatting excel work book, Perform calculations with functions, Sort and Filter data with Excel, Create effective 2D and 3D charts to Present data visually.	10
3.	Advance MS-Excel : Analyze data using pivot tables and pivot charts, Protecting and sharing the work book, Use Macros to automate tasks, Proofing and Printing, More useful functions in excel, Goal seek and scenario features, V-lookup and H-lookup functions, Advanced sort and filter in excel.	10
4.	MS-PowerPoint: Setting up PowerPoint environment, Creating slides and applying themes, Working with bullets and numbering, Working with objects, Hyperlinks and action buttons, Working with movies and sounds, Using SmartArt and Tables, Animation and slide transition, Using slide master, Slide show option, Proofing and Printing.	10

DEPARTMENT OF COMPUTER ENGINEERING

5	Introduction to Latex: Installation of the software LaTeX , Understanding Latex compilation, Basic Syntax, Writing equations, Matrix, Tables, Page Layout – Titles, Abstract Chapters, Sections, References, Equation references, citation. List making environments, Table of contents, Generating new commands, Figure handling, Numbering, List of figures, List of tables, Generating index. Packages - Geometry, Hyperref, amsmath, amssymb, algorithms, algorithmic graphic, color, tilezlisting. Classes: article, book, report, beamer, slides. IEEtran. Applications - Writing Resume, Writing articles/ research papers, project report.	10
6	Internet Ethics & AI tools Working with Internet and-mail, Using the Internet, Internet Ethics and Safety, Social Media, AI Tools :Jasper, GitHub Copilot, Synthesia, Writesonic.	08
	TOTAL	56

List of Experiments:

1. Create a collaborative document project where multiple users contribute to a document using MS Word's track changes and commenting features.
2. To analyze and visualize data effectively using Excel's functions and charts, aiming to create insightful and dynamic data visualizations.
3. Develop a financial modeling project using Excel, incorporating advanced functions like goal seek, scenario analysis, and pivot tables. Build automation using macros for repetitive tasks.
4. Create an interactive multimedia presentation on a complex topic of interest. Incorporate animations, transitions, embedded videos, and interactive elements like hyperlinks and action buttons.
5. Design and implement a digital marketing campaign for a fictitious product or service. Create email newsletters, social media posts, and analyze campaign performance metrics.
6. Prepare research article using Latex.

Text Books:

1. Banerjee Snigdha, "MS Word 2000", New Age International.
2. Quentin Docter, Q., et al., "CompTIA IT Fundamentals Study Guide: Exam FC0-U61", Wiley, USA.
3. Lambert, J., Frye, C., et al., "Microsoft Office 2019 Step by Step", Microsoft Press, USA.

Reference Books:

1. Walkenbach John, "Excel 2013 Bible", Wiley Publishing House.
2. WempenFaithe, "Microsoft PowerPoint 2010 Bible", Wiley Publishing House.
3. Miller, M., "Internet Basics Absolute Beginner's Guide", Que Publishing, USA.
4. Miller, M., "Computer Basics Absolute Beginner's Guide", Que Publishing, USA.

E-Resources:

1. Microsoft Office Support provides tutorials and guides for MS Office applications.<https://support.microsoft.com/en-us/training>
2. Digital Skilling by NPTEL - <https://elearn.nptel.ac.in/shop/nptel/digital-skilling/?v=c86ee0d9d7ed>

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF COMPUTER ENGINEERING

Note - From Semester II onwards after every semester during vacation, students has to undergo for internship compulsory. The evaluation will be done in next successive semester.