

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ROBOTICS AND AUTOMATION

Curriculum Structure and Syllabus of F.Y. B. Tech. – Robotics and Automation

(With effect from - Academic Year 2025 - 26)

VISION OF THE INSTITUTE

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION OF THE INSTITUTE

- To achieve academic excellence through innovative teaching and learning process.
 - To imbibe the research culture for addressing industry and societal needs.
 - To inculcate social attitude through community engagement initiatives.
 - To provide conducive environment for building the entrepreneurial skills.

DEPARTMENT OF ROBOTICS AND AUTOMATION

VISION:

To be recognized as a multidisciplinary department and build skilled professionals by imparting quality technical education and inculcating problem solving and lifelong learning skills through project based approach in collaboration with industries in the field of Robotics & Automation.

MISSION:

- M1:** To impart quality technical education in Robotics and Automation Engineering.
- M2:** To inculcate sustainable skills in automation technologies, research and learning attitudes, and social responsibilities.
- M3:** To be committed to fulfill the needs of society in the Robotics & Automation industries.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- PEO1:** Robotics & Automation Engineering graduates excel in solving industrial challenges, innovating for society, and leveraging core engineering principles for industry advancement.
- PEO2:** Graduates will apply technical expertise, leadership, and entrepreneurship, to establish ethical organizations to address societal needs and pursue higher studies.
- PEO3:** Graduates will work effectively as individuals and as team members with high ethical values and motivation for life-long learning for the benefit of society.

PROGRAM OUTCOMES (POs):

- PO1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

DEPARTMENT OF ROBOTICS AND AUTOMATION

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

PSO1: Design and Development of robotic systems that are cost effective, environment friendly to solve engineering and societal problems using advanced tools and techniques.

PSO2: Model, program and build an error free, safe, and productive automation systems for various manufacturing processes.

PSO3: Apply domain knowledge of robotics and automation to provide solutions in interdisciplinary areas to meet current industrial challenges.

DEPARTMENT OF ROBOTICS AND AUTOMATION

LIST OF ABBREVIATIONS

Abbreviation	Description
BSC	Basic Science Course
ESC	Engineering Science Course
PCC	Programme Core Course
PEC	Programme Elective Course
MDM	Multidisciplinary Minor
OE	Open Elective - Other than a particular program
VSEC	Vocational and Skill Enhancement Course
AEC	Ability Enhancement Course
ENTR	Entrepreneurship
EC	Economics
MC	Management Courses
IKS	Indian Knowledge System
VEC	Value Education Courses
RM	Research Methodology
CEP	Community Engagement Project
FP	Field Project
PROJ	Project
INT	Internship
OJT	On Job Training
CC	Co-curricular Courses
HSSM	Humanities Social Science and Management
ELC	Experiential Learning Course
B. Tech	Bachelor of Technology
L	Lecture
P	Practical
T	Tutorial
H	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Evaluation
TH	Theory
Tut	Tutorial
TW	Term Work
OR	Oral
PR	Practical

DEPARTMENT OF ROBOTICS AND AUTOMATION

First Year B. Tech. – Robotics and Automation: Semester - I

Course Code	Course Type	Course Name	Teaching Scheme (hrs/Week)							Evaluation Scheme					
			L	P	T	H	CR			CIE	ETE	TW	PR	OR	Total
							TH	PR/Tut	Total						
25RABS101	BSC	Engineering Mathematics I	3	-	-	3	3	-	3	40	60	-	-	-	100
25RABS102	BSC	Engineering Physics	2	2	-	4	2	1	3	40	60	25	-	-	125
25RAES101	ESC	Technical Drawings with Engineering Graphics	2	2	-	4	2	1	3	40	60	25	-	25	150
25RAES102	ESC	Fundamentals of Electronics Engineering	3	2	-	5	3	1	4	40	60	50	-	25	175
25RAVS101	VSEC	IT Proficiency	-	4	-	4	-	2	2	-	-	25	-	-	25
25RACC101	CC	Professional Development - I	-	4	-	4	-	2	2	-	-	50	-	-	50
25RACC102	CC	Liberal Learning – I*	-	2	-	2	-	1	1	-	-	25	-	-	25
25RAIK101	HSSM - IKS	Indian Knowledge System & Financial Literacy	2	-	-	2	2	-	2	-	-	50	-	-	50
Total			12	16	-	28	12	08	20	160	240	250	-	50	700

* Liberal Learning – I: Choose any one from the following:

Sr. No.	Course Code	Module	Sr. No.	Course Code	Module
1.	25RACC102A	Guitar	6.	25RACC102F	Basketball
2.	25RACC102B	Singing	7.	25RACC102G	Cricket
3.	25RACC102C	Cinematography	8.	25RACC102H	Rifle and Pistol Shooting
4.	25RACC102D	Dance	9.	25RACC102I	Volleyball
5.	25RACC102E	Synthesizer	10.	25RACC102J	Football

BoS Chairman

Director

ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

DEPARTMENT OF ROBOTICS AND AUTOMATION

First Year B. Tech. – Robotics and Automation: Semester - II

Course Code	Course Type	Course Name	Teaching Scheme (hrs/Week)						Evaluation Scheme						
			L	P	T	H	CR			CIE	ETE	TW	PR	OR	
TH	PR/Tut	Total	CIE	ETE	TW	PR	OR	Total							
25RABS203	BSC	Engineering Mathematics II	3	-	-	3	3	-	3	40	60	-	-	-	100
25RABS204	BSC	Engineering Chemistry	2	2	-	4	2	1	3	40	60	25	-	-	125
25RAES203	ESC	Fundamentals of Electrical Engineering	3	2	-	5	3	1	4	40	60	25	-	-	125
25RAES204	ESC	Engineering Mechanics	2	-	-	2	2	-	2	40	60	-	-	-	100
25RAPC201	PCC	Introduction to Robotics & Automation	3	-	-	3	3	-	3	40	60	-	-	-	100
25RAVS202	VSEC	Computer Aided Engineering Drawing	-	2	-	2	-	1	1	-	-	-	25	-	25
25RAVS203	VSEC	Skill-Building with Arduino	-	2	-	2	-	1	1	-	-	25	-	-	25
25RACC203	CC	Professional Development – II	-	4	-	4	-	2	2	-	-	25	-	-	25
25RACC204	CC	Liberal Learning – II*	-	2	-	2	-	1	1	-	-	25	-	-	25
25RAAE201	HSSM - MC	Quality Management System – I	-	4	-	4	-	2	2	-	-	25	-	-	25
Total			12	20	-	32	12	10	22	200	300	200	-	-	700

* Liberal Learning – II: Choose any one from the following:

Sr. No.	Course Code	Module	Sr. No.	Course Code	Module
1.	25RACC204A	Guitar	6.	25RACC204F	Basketball
2.	25RACC204B	Singing	7.	25RACC204G	Cricket
3.	25RACC204C	Cinematography	8.	25RACC204H	Rifle and Pistol Shooting
4.	25RACC204D	Dance	9.	25RACC204I	Volleyball
5.	25RACC204E	Synthesizer	10.	25RACC204J	Football

BoS Chairman

Director
ZES's Zeal College of
Engineering & Research
Narhe, Pune - 411041.

DEPARTMENT OF ROBOTICS AND AUTOMATION

INDEX

Sr. No.	Course Code	Course Name	Page No.
First Year B. Tech. Robotics and Automation : Semester - I			
1	25RABS101	Engineering Mathematics I	8
2	25RABS102	Engineering Physics	10
3	25RAES101	Technical Drawings with Engineering Graphics	14
4	25RAES102	Fundamentals of Electronics Engineering	17
5	25RAVS101	IT Proficiency	20
6	25RACC101	Professional Development - I	22
7	25RACC102	Liberal Learning – I	23-32
8	25RAIK101	Indian Knowledge System & Financial Literacy	33
First Year B. Tech. Robotics and Automation : Semester - II			
9	25RABS203	Engineering Mathematics II	36
10	25RABS204	Engineering Chemistry	38
11	25RAES203	Fundamentals of Electrical Engineering	41
12	25RAES204	Engineering Mechanics	44
13	25RAPC201	Introduction to Robotics & Automation	47
14	25RAVS202	Computer Aided Engineering Drawing	50
15	25RAVS203	Skill-Building with Arduino	53
16	25RACC203	Professional Development – II	56
17	25RACC204	Liberal Learning – II	57-66
18	25RAAE201	Quality Management System – I	67

DEPARTMENT OF ROBOTICS AND AUTOMATION

SYLLABUS
SEMESTER - I

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Engineering Mathematics I	Code: 25RABS101								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	-	-	03	40	60	-	-	-	100
Prerequisites:									
Basic concept of Differentiation, Integration, Maxima and Minima, Matrices and Determinants.									
Course Objectives:									
<ol style="list-style-type: none"> 1. To acquaint the students to rank of matrix, solution of simultaneous equations, Eigen values and Eigen vectors. 2. To acquire techniques of the expansion of functions about any point and to evaluate the indeterminate forms of limits. 3. To make students familiar with multivariable differentiation and its applications. 4. To introduce to student awareness of concept of Fourier series. 									
Course Outcomes: After completion of this course, students will be able to -									
CO1	Use of matrix method for solving system of simultaneous linear equations.								
CO2	Find Eigen values and Eigen vectors of the matrix.								
CO3	Describe the power series expansion of a given function and evaluate limits.								
CO4	Understand the basic concepts of partial derivatives.								
CO5	Evaluate partial derivatives to estimate maxima and minima of function of multiple variables.								
CO6	Determine the Fourier series representation and harmonic analysis for design.								
Course Contents:									
Unit	Description	Duration (Hrs.)							
1.	System of Linear Equations: Rank of a matrix, System of linear equations, Linear dependence and independence of vectors, Linear and orthogonal transformations, Application to problems in engineering.	7							
2.	Eigen Values and Eigen Vectors, Diagonalization: Eigen values and Eigen vectors, Cayley-Hamilton theorem, Diagonalization of a matrix, Reduction of quadratic forms to canonical form by linear and orthogonal transformations.	7							
3.	Differential Calculus: Rolle's theorem, Mean value theorems, Taylor's series and Maclaurin's series, Expansion of functions using standard expansions, Indeterminate forms.	7							
4.	Partial Differentiation: Partial derivatives of first and higher orders, Euler's theorem on homogeneous functions, Partial derivative of composite functions, Total derivative and Implicit differentiation	7							
5.	Applications of Partial Differentiation: Jacobians and their applications, Errors and Approximations. Maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers.	7							
6.	Fourier Series: Definition, Dirichlet's conditions, Full range Fourier series, Half range Fourier series, Harmonic analysis.	7							
TOTAL		42							

DEPARTMENT OF ROBOTICS AND AUTOMATION

Text Books:

1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication
3. Howard Anton & Chris Rorres, "Elementary Linear Algebra", John Wiley & sons.
4. Seymour Lipschutz, Marc Lipson, "Schaum's outlines of Linear Algebra", 6th edition McGraw-Hill Education (India) Private Limited, New Delhi.

Reference Books:

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.
2. M. D. Greenberg, "Advanced Engineering Mathematics", Pearson Education.
3. Peter V. O'Neil, "Advanced Engineering Mathematics", Thomson Learning.
4. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics (Vol. I & Vol. II)", Vidyarthi Griha Prakashan, Pune.
5. Ron Larson and David C. Falvo, "Elementary Linear Algebra", Houghton Mifflin Harcourt Publishing Company

E-Resources:

1. A NPTEL Course on "Engineering Mathematics-I" IIT Khargpur -
<https://www.youtube.com/watch?v=4QFsiXfgbzM&list=PLbRMhDVUMngeVrxtbBz-n8HvP8KAWBpI5>
2. Paathshala Pandit, "Rank of Matrix | Vector Space | Engineering Mathematics" -
https://www.youtube.com/watch?v=jHU3yasfpKw&list=PLU4tRlorU5wWPpemhfdG0Yc4zNiI_CSMVO&index=1
3. Eigenvalues and Eigenvectors | Properties and Important Result | Matrices
<https://www.youtube.com/watch?v=1wjXVdwzgX8>
4. Taylor Series | Numericals | Maths 1 | B.Tech 1st year | Engineering | BSc -
<https://www.youtube.com/watch?v=0bHky1ocA1Y>
5. Partial Differentiation Example And Solution | Multivariable Calculus -
<https://www.youtube.com/watch?v=eTp5wq-cSXY&list=PLU6SqdyeYsfLuIJdHwY92aGBg5-uRHBOb&index=1>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Engineering Physics	Code: 25RABS102								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	-	-	125

Prerequisites:

Fundamentals of Physics, basic of interference, polarization, de-Broglie hypothesis, semiconductor and ultrasonic.

Course Objectives:

1. To make the students understand and study the basic principles of Physics.
2. To provide firm grounding to the students in the concept of physics to resolve many engineering and technological problems.
3. To impart the knowledge of the fundamentals of physics to the students through hands on experiments and extend it to relevant engineering applications.

Course Outcomes: After completion of this course, students will be able to -

CO1	Explain basics of interference and polarization connected to engineering applications.
CO2	Make use of Laser technology and Optical fiber in various disciplines.
CO3	Outline the fundamentals of Quantum Physics and relate it to engineering applications.
CO4	Apply basics of semiconductors for solving the engineering problems.
CO5	Extend the understanding of Ultrasonic and NDT in engineering.
CO6	Interpret the use of nanoparticles and superconductors in the field of engineering.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Wave Optics: Units and its conversion-Length, Mass, Velocity, Acceleration Momentum, Time, Temperature, Wavelength, Energy, Current, Voltage, Power, Intensity, Amplitude, Frequency, Pressure, Resistance, compressibility, resistivity, conductivity, Mobility, Angle.</p> <p>Interference- Interference in thin film of uniform thickness and its conditions (Simple Numerical), Engineering Applications – Ant-Reflection coating (ARC).</p> <p>Polarization- Polarization and its types, Malus law and Brewster's law (Simple numerical), Double refraction, Huygens's theory of double refraction, Differentiate between positive & negative crystal, Engineering applications of polarization: Liquid Crystal Display (LCD).</p>	5
2.	<p>Laser and Optical Fiber:</p> <p>Laser- Basic Principles of laser, Elements of Laser, Characteristics of laser, He-Ne laser (Gas laser), Applications of laser – Medical, Industrial and Holography- Recording.</p> <p>Optical fibers- Propagation of light - Acceptance angle, Acceptance cone, Numerical aperture, Fractional Refractive Index Change (Simple numerical). Types of optical fibers, Advantages of optical fiber communication, Applications of optical fiber in Medical, Communication, Entertainment, Data Security.</p>	5

DEPARTMENT OF ROBOTICS AND AUTOMATION

3.	<p>Quantum Physics: de-Broglie hypothesis of matter waves, de-Broglie wavelength for a particle accelerated by Kinetic Energy (K.E) and a charged particle accelerated by Potential difference (PD) "V", (Simple Numerical), Properties of matter waves, Heisenberg's uncertainty principle for wide wave packet and narrow wave packet (Simple Numerical), Tunneling Effect, Engineering applications - Scanning Tunneling Microscope (STM), Introduction to Quantum Computing.</p>	4
4.	<p>Semiconductor Physics: Classification of solids on the basis of band theory, Fermi level for metal and semiconductor, Position of Fermi level in extrinsic semiconductors (only diagram), Solar cell: principle, working, IV-characteristics, Efficiency and fill factor, Factor to improve efficiency of solar cell, Application, advantages and disadvantages of solar cell, Hall effect: derivation for Hall voltage and Hall coefficient (Simple numerical).</p>	5
5.	<p>Ultrasonic and Non-destructive Testing: Ultrasonic- Properties of ultrasonic waves, Piezoelectric effect and inverse of piezoelectric effect, Generation of ultrasonic waves by inverse piezoelectric effect (using transistor), Compressibility of liquid by using ultrasonic waves (Simple Numerical). Non- Destructive Testing (NDT): Definition and its objectives, Difference between destructive testing and non-destructive testing, Application of NDT as an Ultrasonic flaw detection technique (Simple numerical), Advantages of NDT.</p>	4
6.	<p>Nanophysics and Superconductivity: Nanophysics- Introduction of nanophysics, Properties of nanoparticles (Optical, Electrical, Mechanical), Applications of nanomaterials in Electronics, Automobile, Medical. Superconductivity- Definition of superconductivity on the basis of temperature dependence of resistivity, Properties of Superconductors, Meissner effect, Critical magnetic field (Simple Numerical), Type I and Type II Superconductors, Engineering applications of superconductivity in Superconducting Quantum Interface Device (SQUID) with its principle, working, general application of superconductors - Power Transmission, electronics, medical, principle of Maglev train.</p>	5
TOTAL	28	

List of Experiments:**Perform any 08 experiment out of 12:**

1. Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of Plano-convex lens).
2. Experiment based on polarization (To verify Law of Malus).
3. Determination of refractive index using Brewster's law.
4. Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).
5. Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).
6. Determination of Planck's constant using available experimental setup.
7. To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).

DEPARTMENT OF ROBOTICS AND AUTOMATION

8. To determine Hall coefficient and charge carrier density.
9. Determination of velocity of ultrasonic waves and compressibility of given liquid by using Ultrasonic Interferometer.
10. An experiment based on optical fiber. (To determine the numerical aperture acceptance angle acceptance cone of optical fiber of laser diode).
11. Experiment based on semiconductor (To determine the temperature dependence characteristics of semiconductor).
12. To determine the unknown wavelength by using plane diffraction grating.

Text Books:

1. M. N. Avadhanulu and P.G. Kshirsagar, "Engineering Physics", S. Chand Publications.
2. S. O. Pillai, "Solid State Physics", New age International Publications.
3. J. J. Sakurai, "Modern Quantum Mechanics", Pearson Publication.
4. V K Mehta and Rohit Mehta, "Basic Electrical Engineering", S Chand Publications.
5. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press".

Reference Books:

1. H. D. Young and R. A. Freedman, "University Physics", Pearson Publication.
2. Resnick and Halliday, "Principles of Physics", John Wiley and Sons.
3. Jenkins and White, "Optics", Tata McGraw Hill.
4. Noson S. Yanofsky and Mirco A. Mannucci, "Quantum computing for computer scientists", Cambridge University Press

E-Resources:

1. NPTEL Course:
 - a) NPTEL lecture based on interference of polarized light by IIT Roorkee - https://youtu.be/e-4QK_JVsdu?si=gWIBt41dDgeABO8Y
 - b) NPTEL lecture based on Introduction of Polarization by IIT Roorkee- <https://youtu.be/fIVlzKB4bBQ?si=meWFP5matsopCABi>
 - c) NPTEL lecture based on Malus Law by IIT Roorkee <https://youtu.be/iFG82I3nFA0?si=JCln6fJqGNw6ix5U>
 - d) NPTEL lecture based on Double Refraction by IIT Roorkee <https://youtu.be/Pt5wvYyguq0?si=4mowxORZQXGXNxMW>
 - e) NPTEL lecture based on Semiconductor Physics by IIT Roorkee - <https://youtu.be/q7VIITSysMs?si=621AMoJ2tMHKRiDH>
 - f) NPTEL lecture based on Introduction to superconductivity <https://youtu.be/hGPA1g8fKug?si=FdYfju6bf6u2zRe>
 - g) NPTEL lecture based on Meissner Effect- <https://youtu.be/EkNnxBakJMs?si=qRnSvPlD2NTe4rf->
2. Feynman lecture series: <https://www.feynmanlectures.caltech.edu/>
3. Concepts of Modern Physics, Arthur Beiser: - https://nitsri.ac.in/Department/PHYSICS/Beiser_Modern_Physics.pdf
4. Lectures by Walter Lewin: <https://www.youtube.com/channel/UCiEHVhv0SBMpP75JbzJShqw>
5. Quantum Mechanics Lecture Series by Prof. H.C. Verma -

DEPARTMENT OF ROBOTICS AND AUTOMATION

https://www.youtube.com/watch?v=JFWuAQRZPjQ&list=PLWweJWdB_GuISnGkAafMpzzDBvTHg02At

6. Virtual Labs, Amrita University- <https://vlab.amrita.edu/?sub=1&brch=195>
7. Virtual Labs, IIT Kanpur- <https://bop-iitk.vlabs.ac.in/exp/energy-band-gap/simulation.html>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Technical Drawings with Engineering Graphics	Code: 25RAES101								
Teaching Scheme				Evaluation Scheme					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	25	-	150

Prerequisites:

1. Strong understanding of geometry, trigonometry, and basic algebra for precise measurements
2. Basic knowledge of electrical and electronics.
3. Spatial visualization in technical drawings.

Course Objectives:

1. Define and explain the fundamental principles of engineering drawing and design.
2. Apply appropriate techniques to create and interpret engineering drawings, including sheet layout, line types, and dimensioning.
3. Analyze and construct various geometric constructions and engineering curves such as conic sections, helixes, and rolling curves.
4. Master orthographic and isometric projection methods for representing complex objects and assemblies.
5. Demonstrate the ability to develop lateral surfaces for objects like cones, pyramids, and prisms, and understand their industrial applications.
6. Interpret and create electrical and electronic diagrams and symbols used in circuit representation and wiring diagrams.

Course Outcomes: After completion of this course, students will be able to -

CO1	Apply fundamental principles of engineering drawing and design to create accurate and standardized technical drawings.
CO2	Create detailed orthographic projections of complex objects and assemblies using both First and Third angle projection methods, ensuring clarity and accuracy.
CO3	Create precise isometric projections from given orthographic views, highlighting spatial relationships and proportions effectively.
CO4	Develop accurate lateral surface developments for cut sections of cones, pyramids, and prisms, illustrating practical industrial applications with attention to detail.
CO5	Interpret electrical symbols and standards to accurately represent basic electrical circuits and systems in schematic diagrams.
CO6	Interpret graphical representations of electronic components (resistors, capacitors, diodes, transistors, etc.) and create schematic diagrams of basic electronic circuits.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Fundamentals of Engineering Drawing: Need of Engineering Drawing and design, Sheet layout, Line types and dimensioning and simple geometrical constructions. Principle of projections, Introduction to First and Third angle Projection methods,	5

DEPARTMENT OF ROBOTICS AND AUTOMATION

	Projection of point, line and plane.	
2.	Orthographic Projection and Sectional Views: Orthographic projection of plane and solids Full Section and Half Section view of a cutting plane.	5
3.	Isometric Projection: Introduction to isometric projection, oblique projection and perspective projection. Draw the isometric projection from the given orthographic views	5
4.	Development of Lateral Surfaces and Missing Views: Introduction to development of lateral surfaces and its industrial applications. Draw the development of lateral surfaces for cut section of cone, pyramid, prism etc. Interpretation of given views.	5
5.	Electrical Symbols and Circuit Diagrams: Introduction to electrical symbols and standards, basic electrical circuits and their graphical representation and schematics of simple electrical systems. Introduction to wiring diagrams.	4
6.	Electronic Components and Circuit Diagrams: Introduction to symbols and graphical representation of electronic components (resistors, capacitors, diodes, transistors, etc.) and schematic diagram of basic electronic circuits.	4
TOTAL		28

List of Experiments:

- Engineering drawing standards like types of lines, lettering and dimensioning.
- Projection of lines. (Two Problems)
- Projection of Planes. (Two Problems)
- Orthographic Projection of given objects including sectional view. (Two Problems)
- Isometric projection for the given set of two-dimensional views. (Two Problems)
- Projection of Solids and Development of Lateral Surfaces of solids. (One problem each)
- Draw and label the symbols for a resistor, capacitor, diode, transistor, and motor
- Interpret a simple battery-powered LED circuit diagram and explain the connections
- Design a basic circuit for motor control using switches and relays.
- Identify and draw standard symbols for common electronic components (resistors, capacitors, diodes, transistors).

Text Books:

- N.D. Bhatt and V.M. Panchal, "Engineering Drawing", Charotar Publishing House.
- Frederick E. Giesecke, Alva Mitchell, et al., "Technical Drawing with Engineering Graphics", Pearson Education.
- Allan R. Hambley, "Electrical Engineering: Principles and Applications", Pearson.
- Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education.
- SP 46:2003, Engineering Drawing Practice for Schools and Colleges.

Reference Books:

- Bhattacharya S. K., "Electrical Engineering Drawing," New Age International Publishers, 2nd ed, 1998, reprint 2005.

DEPARTMENT OF ROBOTICS AND AUTOMATION

2. Chris Schroder, "Printed Circuit Board Design using AutoCAD," Newnes, 1997.
3. Donald G. Fink and H. Wayne Beaty, "Standard Handbook for Electrical Engineers," McGraw Hill Education.

E-Resources:

1. **Coursera:** Courses on technical drawing, engineering graphics, and CAD software (AutoCAD, SolidWorks). <https://www.coursera.org/collections/learn-cad-drawings-prototypes>
2. **MIT Open CourseWare:** Access to lecture notes, assignments, and resources from MIT's engineering courses, which cover topics related to technical drawing and engineering design. https://ocw.mit.edu/courses/2-007-design-and-manufacturing-i-spring-2009/pages/related-resources/drawing_and_sketching/

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Fundamentals of Electronics Engineering	Code: 25RAES102								
Teaching Scheme				Evaluation Scheme					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	PR	OR	Total
03	02	-	04	40	60	50	-	25	175

Prerequisites:

1. Basic understanding of electric circuits and components.
2. Knowledge of basic physics concepts such as electricity, magnetism, and semiconductor behavior.
3. Understanding of basic digital electronics principles like logic gates and number systems.

Course Objectives:

1. To understand the Fundamentals of Passive Electronic Components and Semiconductor Materials.
2. To master the Principles and Applications of Diodes and Special Purpose Diodes.
3. To familiarize with Transistor Operation, Configurations, and Applications.

Course Outcomes: After completion of this course, students will able to -

CO1	Demonstrate proficiency in analyzing and designing electronic circuits utilizing passive components.
CO2	Explain p-n junction diode and vi characteristics.
CO3	Apply knowledge of transistor characteristics and configurations in circuit design.
CO4	Utilize operational amplifiers in electronic circuit design and analysis.
CO5	Recognize the principles of electronic measurements and instrumentation.
CO6	Explain basic digital number system conversion.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to Electronics Components: Introduction to Electronics: Evolution of Electronics, Impact of Electronics in industry and society. Introduction to Passive Components: Classification, Specifications and Color coding techniques of Resistors, Capacitors, Inductors. Introduction to Active Components: Construction, Types and Applications.	6
2.	Semiconductor materials: Semiconductors: P-type and N-type, Current in semiconductors: Diffusion and Drift Current. P-N Junction Diode: Construction, working in forward and reverse bias, V-I characteristics, Diode applications: Diode as a switch, Diode as Rectifier: HWR, FWR, BR, Specifications of Rectifier diodes. Special purpose diodes: Zener diode: V-I Characteristics, Specification and Zener as voltage regulator, Light Emitting Diode (LED) and photo diode.	8

DEPARTMENT OF ROBOTICS AND AUTOMATION

3.	Transistor Circuits: Transistors: Construction, types, operation, Characteristics and region of operation, CB, CE, CC configurations, BJT as a switch and CE amplifier. FET: Introduction, Construction, Operation, V-I characteristics. Metal Oxide Semiconductor Field Effect Transistors (MOSFET): Types of MOSFET, n- Channel E-MOSFET : Construction, Operation, V-I characteristics.	8
4.	Linear Integrated Circuits: Introduction to Op-amp, Functional block diagram of operational amplifier, idea land practical parameters, Concept of negative& positive feedback, Applications-Inverting and Non inverting amplifier. IC 555 timer as an oscillator, voltage regulation , IC voltage regulators(Three Pin)	6
5.	Electronic Measurements and Instrumentation: Electronics measurements: Frequency measurements and conversions in various units like Hz, KHz, MHz etc, and Voltage, current and power Measurement units, measurement units for resistance, conductance, impedance, capacitance and inductance. Electronic Instruments: Principles and block diagram of digital multimeter, Function Generator, Digital Storage Oscilloscope (DSO) Power scope, AC/DC power supply, Auto transformer, Analog ammeter and voltmeter.	7
6.	Digital Number System And Boolean Algebra: Introduction: Binary, octal , Decimal, Hexadecimal numbers, and its conversion. Signed Binary number representation: Signed Magnitude, 1's complement and 2's complement representation. Binary, Octal, Hexadecimal Arithmetic: 2's complement arithmetic. Boolean algebra and logic Gates: Boolean algebra, Basic theorems and properties of Boolean algebra. Logic Gates, DeMorgan's theorem.	7
TOTAL		42

List of Experiments:**Perform any 8 Experiments:****Perform any Seven (07) experiments from Exp. No 1 to 9, 10th is compulsory:**

1. Study of Active and Passive components: Resistors (Fixed & Variable), Calculation of resistor value using color code., Capacitors (Fixed & Variable), Inductors, Devices such Diode, BJT, MOSFETs, various IC packages, Switches & Relays.
2. Measurements using various measuring equipments:
 - i) Set up CRO and function generator for measurement of voltage, frequency.
 - ii) Obtain the phase shift between to signals using CRO with the help of Lissagous pattern.
 - iii) Measure voltage, resistance using digital multimeter. Also use multimeter to check diode, BJT.
3. Build and test circuits using Semiconductor devices and Plot V-I characteristics:
 - i) P-N Junction Diode (Study the datasheet of typical PN junction diode 1N 400X).
 - ii) Zener Diode (Study the datasheet of typical Zener diode 1N 4148).
4. Build and test Rectifier circuits:
 - i) Implement half wave, full wave and bridge rectifier using diodes.
 - ii) Observe the effect of capacitor filter on rectifier output.
5. Study of Single stage BJT Common Emitter amplifier circuits.

DEPARTMENT OF ROBOTICS AND AUTOMATION

- i) Identify pins of a BJT (Such as BC547) and Study its datasheet specifications.
- ii) To measure voltage and observe waveforms at input and output terminals of single stage BJT Common Emitter amplifier circuits.
- iii) Calculate Voltage Gain of the amplifier.
6. Study of Op-amp based amplifier circuits: Build inverting and non-inverting amplifier using op-amp (Study the datasheet of typical Op-Amp 741)
7. Study of IC 555 Timer Circuits.
- i) Identify pins of IC 555 Timer Circuits.
- ii) Observe output waveforms and measure frequency of output of IC 555 Timer used in Astable Mode.
8. Study of convergence of number system:
 - i) a) Convert the any number system into its Binary equivalent.
 - ii) b) Convert the any number system into its Octal equivalent.
 - iii) c) Convert the any number system into its decimal equivalent.
 - iv) d) Convert the any number system into its Hexa decimal equivalent.
9. Verify truth table of Basic Gates.
10. Case Study of any one electronics appliances with block diagram, specification etc. (Compulsory).

Text Books:

1. Thomas. L. Floyd, "Electronics Devices", 9th Edition, Pearson.
2. R.P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill.
3. H.S. Kalsi, "Electronic Instrumentation", 3rd Edition, Tata McGraw Hill.
4. D. Patrnabis, "Sensors and Transducers", 2nd Edition, PHI.

Reference Books:

1. Donald A. Neamen, "Semiconductor Physics and Devices", McGraw-Hill Higher Education, 2011.
2. Paul Horowitz and Winfield Hill, "The Art of Electronics", Cambridge University Press.
3. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Prentice Hall, 2000 Education.
4. Brian R. Jones "Principles of Electronic Instrumentation", Prentice Hall.
5. Ramon Pallas-Areny and John G. Webster, "Sensors and Signal Conditioning", Wiley.

E-Resources:

1. MIT Open CourseWare – Electronics
<https://ocw.mit.edu/courses/6-002-circuits-and-electronics-spring-2007/>
2. NPTEL - Electronics & Communication Engineering
<https://archive.nptel.ac.in/courses/117/105/117105144/>
3. All About Circuits
<https://www.allaboutcircuits.com/>
4. Electronics Hub
<https://www.electronicshub.org/>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: IT Proficiency					Code: 25RAVS101				
Teaching Scheme (Hrs/week)					Evaluation Scheme (Marks)				
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	25	-	-	25

Prerequisites:

Basic Computer Skills

Course Objectives:

1. To develop proficiency in essential office software and tools, including MS Word, MS Excel, MS PowerPoint, and LaTeX, to create, analyze, and present professional documents and data effectively, while understanding ethical internet use and leveraging AI tools.

Course Outcomes: After completion of this course, students will be able to -

CO1	Create and format professional documents using MS Word.
CO2	Organize and analyze data using Excel's features.
CO3	Apply advanced Excel functions, pivot tables, charts, and macros to analyze and secure data.
CO4	Create effective presentations using MS PowerPoint features.
CO5	Create Professional Documents Using LaTeX.
CO6	Apply ethical practices in using internet resources and AI tools.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Basics of Computer and MS Word: Awareness of computer Basics MS-Word: Text Basics, Text Formatting and saving file, Working with objects, Header & footers, Working with bullets and numbered lists, Tables, Styles and Content, Merging documents, Sharing and maintaining document, Proofing the document, Printing.</p>	08
2.	<p>MS-Excel: Introduction to Excel, Formatting excel work book, Perform calculations with functions, Sort and Filter data with Excel, Create effective 2D and 3D charts to Present data visually.</p>	10
3.	<p>Advance MS-Excel: Analyze data using pivot tables and pivot charts, Protecting and sharing the work book, Use Macros to automate tasks, Proofing and Printing, More useful functions in excel, Goal seek and scenario features, V-lookup and H-lookup functions, Advanced sort and filter in excel.</p>	10
4.	<p>MS-PowerPoint: Setting up PowerPoint environment, Creating slides and applying themes, Working with bullets and numbering, Working with objects, Hyperlinks and action buttons, Working with movies and sounds, Using SmartArt and Tables, Animation and slide transition, Using slide master, Slide show option, Proofing and Printing.</p>	10

DEPARTMENT OF ROBOTICS AND AUTOMATION

<p>Introduction to Latex: Installation of the software LaTeX, Understanding Latex compilation, Basic Syntax, Writing equations, Matrix, Tables.</p> <p>Page Layout – Titles, Abstract Chapters, Sections, References, Equation references, citation. List making environments, Table of contents, Generating new commands, Figure handling, Numbering, List of figures, List of tables, Generating index.</p> <p>Packages - Geometry, Hyperref, amsmath, amssymb, algorithms, algorithmic graphic, color, tilez listing. Classes: article, book, report, beamer, slides. IEEtran.</p> <p>Applications - Writing Resume, Writing articles/ research papers, project report.</p>	<p>5</p> <p>10</p>
<p>Internet Ethics & AI tools: Working with Internet and-mail, Using the Internet, Internet Ethics and Safety, Social Media,</p> <p>AI Tools: Jasper, GitHub Copilot, Synthesia, Writesonic.</p>	<p>6</p> <p>08</p>
TOTAL	56

List of Experiments:

1. Create a collaborative document project where multiple users contribute to a document using MS Word's track changes and commenting features.
2. To analyze and visualize data effectively using Excel's functions and charts, aiming to create insightful and dynamic data visualizations.
3. Develop a financial modeling project using Excel, incorporating advanced functions like goal seek, scenario analysis, and pivot tables. Build automation using macros for repetitive tasks.
4. Create an interactive multimedia presentation on a complex topic of interest. Incorporate animations, transitions, embedded videos, and interactive elements like hyperlinks and action buttons.
5. Design and implement a digital marketing campaign for a fictitious product or service. Create email newsletters, social media posts, and analyze campaign performance metrics.
6. Prepare research article using Latex.

Text Books:

2. Banerjee Snigdha, "MS Word 2000", New Age International.
3. Quentin Docter, Q., et al., "CompTIA IT Fundamentals Study Guide: Exam FC0-U61", Wiley, USA.
4. Lambert, J., Frye, C., et al., "Microsoft Office 2019 Step by Step", Microsoft Press, USA.

Reference Books:

1. Walkenbach John, "Excel 2013 Bible", Wiley Publishing House.
2. Wempen Faithe, "Microsoft PowerPoint 2010 Bible", Wiley Publishing House.
3. Miller, M., "Internet Basics Absolute Beginner's Guide", Que Publishing, USA.
4. Miller, M., "Computer Basics Absolute Beginner's Guide", Que Publishing, USA.

E-Resources:

1. Microsoft Office Support provides tutorials and guides for MS Office applications.
<https://support.microsoft.com/en-us/training>
2. Digital Skilling by NPTEL - <https://elearn.nptel.ac.in/shop/nptel/digital-skilling/?v=c86ee0d9d7ed>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Professional Development – I	Code: 25RACC101								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	50	-	-	50

Course Objectives:

1. To introduce students on professional development skills and its importance in building personal and professional life.
2. To bring in self-awareness and realization of Values, Self-discipline and self-grooming for betterment of life and contribution to our Society.

Course Outcomes: After completion of this course, students will be able to -

CO1	Know their own values and how to use in their career and personal life.
CO2	Understand the importance of self-discipline and how it can empower individuals to take control of their actions and decision in any situation.
CO3	Know the importance of self-grooming to maintain good health and self-confidence.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Values: Understand, Know, Define and Use of your Values, Types of Values, Internal and External Stakeholders, What is SWOT analysis and how to do, Action planning and execution, Self-review.	24
2.	Self-discipline: Definition, Self-discipline impact in your life and society, Techniques to build self-discipline, Self-review and actions.	16
3.	Self-grooming: What is personal grooming and its importance, Making Self-care guide and practice, Self-care for health and well-being.	16
TOTAL		56

Text Books:

1. R. Srinivasan, "Strategic Management: Text and Cases", PHI Publication.
2. M. K. Sinha, "Success Through Self-Discipline: Your Personal Guide to Achieving Your Goals".

Reference Books:

1. Stephen R. Covey, "The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change", Simon & Schuster, 1989.
2. Jack Canfield, "The Success Principles", HarperCollins, 2005.
3. Norman Vincent Peale, "The Power of Positive Thinking", Prentice Hall, 1952.

E-Resources:

1. Coursera: "The Science of Well-Being" by Yale University, -
<https://www.coursera.org/learn/the-science-of-well-being>
2. Udemy: "Self-Care: Take Care of Yourself to Better Take Care of Others" by Jessica Rogers
<https://www.udemy.com/course/caring-self/?couponCode=UPGRADE02223>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Liberal Learning – I (Guitar)	Code: 25RACC102A								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Guitar musical instrument.

Course Objectives:

1. To build a strong foundation in Indian classical dance through mastering basic techniques, rhythms, expressions, and repertoire, culminating in a performance.

Course Outcomes: After completion of this course, students will be able to -

CO1 Illustrate the fundamental aspects of Guitar instrument.

CO2 Demonstrate the performance of Guitar Instrument.

CO3 Apply different types Chords.

CO4 Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to the Guitar	2
2.	Understanding standard tuning	2
3.	Introduction to tablature and note reading	2
4.	Introduction to basic music theory concepts	2
5.	Understanding scale, intervals, and chords	2
6.	Learning more open chords: D major, D minor, C major, G major	2
7.	Understanding power chords and their shapes	2
8.	Understanding barre chord shapes: F major, B minor	2
9.	Finding Chords by Ear	2
10.	Chord Progressions	2
11.	Advanced Chord Types	2
12.	Transposing Chord	2
13.	Review and Practice	2
14.	Introduction to Scales	2
TOTAL		28

Text Books:

1. David Hodge, "Guitar Theory", DK Publishing.

Reference Books:

1. Russ Shipton, "The Complete Guitar Player", Published by Wise.
2. Vincent Ong, Alfred Khp, "Classical Guitar Advanced Studies Repertoires", Dynamic Publication.

E-Resources:

1. <https://www.youtube.com/watch?v=BBz-Jyr23M4>

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Singing)					Code: 25RACC102B				
Teaching Scheme (Hrs/week)					Evaluation Scheme (Marks)				
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music in singing.

Course Objectives:

1. To offer students' knowledge of the basic concepts of Singing in a very easy to understand manner with their practical applicability.

Course Outcomes: After completion of this course, students will be able to -

CO1 Illustrate the fundamental aspects of Singing.

CO2 Demonstrate the performance of Singing.

CO3 Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Voice Culture in Indian Semi Classical Singing.	2
2.	Basics of Singing o Introduction to semi classical singing.	2
3.	Basics of Indian Semi Classical Music.	2
4.	Learning Basic Ragas.	2
5.	Music Theory Basics.	2
6.	Vocal Warm-ups.	2
7.	Introduction to Ear Training.	2
8.	Breathe Control.	2
9.	Resonance and Tone Production.	2
10.	Diction and Articulation.	2
11.	Dynamics and Expression.	2
12.	Introduction to Repertoire.	2
13.	Practice Techniques.	2
14.	Interpretation and Expression.	2
TOTAL		28

Text Books:

1. Dr. Theodore Dimon, "Anatomy of the Voice, This Is a Voice".

Reference Books:

1. Richard Miller, "The Structure of Singing", Schirmer Books, London.
2. Jennifer Hamady, "The Art of Singing", Published by Hal Leonard.

E-Resources:

1. <https://www.youtube.com/watch?v=4hNq9qykOyE>
2. <https://www.youtube.com/watch?v=b14gkmECz-Y>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Cinematography)					Code: 25RACC102C				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

A basic understanding of film theory, Camera operation, Lighting techniques and visual storytelling is essential for cinematography.

Course Objectives:

1. To make students effectively use their camera's components, study fundamental photography techniques and apply basic to advanced editing skills.

Course Outcomes: After completion of this course, students will be able to -

CO1	Illustrate the fundamental aspects of camera equipment.
CO2	Demonstrate the performance of camera equipment
CO3	Ability to translate creative concepts into visually engaging and coherent film or video projects.
CO4	Mastery in crafting compelling visual narratives through camera angles, lighting, and composition

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Photography	2
2.	Understanding camera components (lens, shutter, sensor)	2
3.	Exposure Triangle	2
4.	Introduction to the rule of thirds, leading lines, and framing	2
5.	Understanding autofocus vs. manual focus	2
6.	Introduction to natural and artificial lighting	2
7.	White Balance and Color Theory	2
8.	Motion and Long Exposure	2
9.	Basics of portrait photography	2
10.	Basics of landscape photography	2
11.	Overview of post-processing software (e.g., Adobe Light room, Photoshop)	2
12.	Introduction to advanced editing tools	2
13.	Organizing and Storing Photos	2
14.	Final Project Presentation and Review	2
TOTAL		28

Text Books:

1. Tania Hoser, "Introduction to Cinematography", Taylor & Francis.

Reference Books:

1. Anat Pick, "Screening Nature", Berghahn Books.
2. Blain Brown, "Cinematography: Theory and Practice", Taylor & Francis.

E-Resources:

1. <https://youtu.be/V7z7BAZdt2M?si=to4yQ46zEKRbxK0m>
2. https://youtu.be/WXdAX0No2hM?si=GZu_mJsmj7NGnAU

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Dance)					Code: 25RACC102D				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Good stamina, flexibility and familiarity with simple rhythmic patterns and beats.

Course Objectives:

1. To build a strong foundation in Indian classical dance through mastering basic techniques, rhythms, expressions, and repertoire, culminating in a performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand the fundamental postures, hand gestures and basic steps of Indian classical dance.
CO2	Understand and perform dance sequences to various rhythmic cycles (Tala) with confidence.
CO3	Convey emotions and stories through facial expressions (Abhinaya) and body language.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Overview of Indian Classical Dance	2
2.	Fundamental Postures and Hand Gestures (Hasta Mudras)	2
3.	Introduction to Basic Steps (Adavus or Tatkars)	2
4.	Rhythmic Patterns and Clapping (Tala)	2
5.	Advanced Basic Steps	2
6.	Strength and Conditioning	2
7.	Introduction to Basic Expressions (Abhinaya)	2
8.	Integrating Steps and Expressions	2
9.	Intermediate Rhythmic Patterns	2
10.	Improvisation and Creative Movement	2
11.	Introduction to Advanced Movements	2
12.	Review and Feedback	2
13.	Learning a Simple Dance Piece - Part 1	2
14.	Learning a Simple Dance Piece - Part 2	2
TOTAL		28

Text Books:

1. Padma Subrahmanyam, "Indian Classical Dance: A Beginner's Manual", Abhinav Publications.

Reference Books:

1. Dr. Aditi Sriram, "Indian Classical Dance: A Guide", Vikas Publishing House.

E-Resources:

1. https://youtu.be/5apCTHzvkWI?si=p11CR_4XxPocTbjO
2. <https://youtu.be/OIKOHzePJCA?si=7pnPZKuvfT5EIWhf>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Synthesizer (Keyboard)					Code: 25RACC102E				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Keyboard musical instrument.

Course Objectives:

1. To offer students' knowledge of the basic concepts of playing Keyboard in a very easy to understand manner with their practical applicability.

Course Outcomes:

CO1	Illustrate the fundamental aspects of Keyboard instrument.
CO2	Demonstrate the performance of Keyboard Instrument.
CO3	Apply different types of Chords.
CO4	Apply basic outline through various prescribed ragas practically.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to the Keyboard	2
2.	Understanding Notes and Keys	2
3.	Basic Music Theory	2
4.	Introduction to the C major scale	2
5.	Learning to play simple melodies in C major	2
6.	Introduction to Chords	2
7.	Combining Melodies and Chords	2
8.	Review and practice melodies and chords	2
9.	Introduction to Minor Scales	2
10.	Introduction to additional chords (D major, E minor)	2
11.	Understanding chord progressions (e.g., I-IV-V)	2
12.	Review scales, chords, and progressions	2
13.	Introduction to Arpeggios	2
14.	Dynamics and Expression	2
TOTAL		28

Text Books:

1. Chuan C. Chang, "Fundamentals of Piano Practice", Create space Independent Publishing Platform.

Reference Books:

1. Michael Rodman, "Keyboard for the Absolute Beginners", Alfred Publishing.
2. Davis Dorrough, "Piano Scales".

E-Resources:

1. https://youtu.be/2mPS-2guHVo?si=8X_4KKezIdrMejLH
2. <https://youtu.be/tEtukfFv3Wk?si=2iJ8wdD0dfjWauPb>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I					
Course: Liberal Learning – I (Basketball)					Code: 25RACC102F					
Teaching Scheme (Hrs/week)					Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit		CIE	ETE	TW	OR	PR	Total
-	02	-	01		-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop foundational basketball skills, including dribbling, passing, shooting, and defense, while understanding game rules and strategies through practical gameplay and scrimmage.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate basic basketball skills such as dribbling, passing, shooting, and defensive fundamentals effectively.
CO2	Apply offensive and defensive strategies, including transition play, during gameplay and scrimmages.
CO3	Understand and implement basketball game rules and referee gestures accurately in practical situations.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Basketball	2
2.	Basic Skills – Dribbling	2
3.	Basic Skills- Passing	2
4.	Basic Skills- Shooting	2
5.	Defensive Fundamentals	2
6.	Rebounding Basics	2
7.	Ball Handling & Control	2
8.	Shooting Mechanics	2
9.	Offensive Strategies	2
10.	Defensive Strategies	2
11.	Transition Play	2
12.	Gameplay & Scrimmage	2
13.	Game Rules , Refree Gestures	2
14.	Practical	2
TOTAL		28

Text Books:

1. K.K. Sharma, "Basketball: Skills and Drills", Sports Publications.

Reference Books:

1. Dr. P.K. Kher, "Basketball Coaching: A Complete Guide", Khel Prakashan.
2. S. Reddy, "The Ultimate Guide to Basketball Training", Blue Rose Publisher.

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Cricket)					Code: 25RACC102G				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance cricket skills from basics to advanced techniques, focusing on tactics, fitness, and specialized fielding and wicket keeping through targeted practice and match simulations.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master fundamental and advanced cricket techniques, including batting, bowling, and specialized fielding and wicket keeping.
CO2	Demonstrate an understanding of game scenarios and tactical strategies, applying them effectively during match simulations and pressure situations.
CO3	Improve physical fitness, strength, and conditioning, with targeted skill enhancement and mid-season assessments to track progress.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction and Fundamentals.	2
2.	Basic Techniques.	2
3.	Introduction to Game Scenarios.	2
4.	Physical Fitness and Match Simulations.	2
5.	Advanced Batting Techniques	2
6.	Advanced Bowling Techniques	2
7.	Specialized Fielding and Wicket keeping	2
8.	Tactical Understanding	2
9.	Refining Batting Techniques	2
10.	Refining Bowling Techniques	2
11.	Fielding Under Pressure	2
12.	Strength and Conditioning	2
13.	Targeted Skill Improvement	2
14.	Mid-Season Assessment	2
TOTAL		28

Text Books:

1. Sanjay Manjrekar, "Cricket Fundamentals", Orient BlackSwan
2. Ravi Shastri, "Winning Cricket: Skills and Strategies", Notion Press

Reference Books:

1. Sachin Tendulkar, "Playing It My Way", Hachette India
2. Rahul Dravid, "Cricket: The Game of Life", Penguin India

E-Resources:

1. Sports and Performance Nutrition, IIT Madras, https://onlinecourses.nptel.ac.in/noc24_hs82/

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)				Semester: I					
Course: Liberal Learning – I (Rifle and Pistol Shooting)				Code: 25RACC102H					
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop fundamental skills in rifle and pistol shooting through technical knowledge, practical drills, and mental preparation for competitive performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master fundamental and advanced shooting techniques for both rifle and pistol, including aiming, breathing, and triggering.
CO2	Develop strong mental focus and relaxation techniques essential for high-performance shooting and competition readiness.
CO3	Gain hands-on experience in live shooting drills and positional shooting, preparing them for competitive shooting scenarios.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction about shooting game	2
2.	Basic technical knowledge	2
3.	Technique Refinement(aiming, breathing and triggering)	2
4.	Learning about live shooting and technics	2
5.	Practicing standard Positional rifle Shooting	2
6.	Mental Preparation and Focus	2
7.	Practice and learning session of live shooting(rifle)	2
8.	Learning about pistol shooting(pistol)	2
9.	Introduction of pistol positions and dry practice	2
10.	Practical Shooting Drills (basic)	2
11.	Learning about live shooting and technics(standing position)	2
12.	Learning of Concentration, breathing and relaxing exercise for shooting	2
13.	Introduction of competition level and practice	2
14.	Final test and oral (rifle and pistol match)	2
TOTAL		28

Reference Books:

1. David Watson, "ABCs of Rifle Shooting", Gun Digest (Imprint of KP Books), 2014

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Volleyball)					Code: 25RACC102I				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop foundational volleyball skills, including serving, passing, setting, spiking, and blocking, while mastering game rules and strategies through practical gameplay and scrimmage.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate proficiency in basic volleyball skills such as serving, passing, setting, spiking, and blocking.
CO2	Apply offensive and defensive strategies effectively, including serve receive and transition play, during gameplay.
CO3	Understand and implement volleyball rules and referee gestures, applying them accurately during practical gameplay and scrimmages.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Volleyball	2
2.	Basic Skills - Serving	2
3.	Basic Skills- Passing	2
4.	Basic Skills- Setting	2
5.	Spiking Basics	2
6.	Blocking Basics	2
7.	Digging Basics	2
8.	Serve Receive	2
9.	Offensive Strategies	2
10.	Defensive Strategies	2
11.	Transition Play	2
12.	Gameplay & Scrimmage	2
13.	Game Rules , Refree Gestures	2
14.	Practical	2
TOTAL		28

Text Books:

1. Jitendra Kumar, "The Complete Guide to Volleyball", Blue Rose Publisher

Reference Books:

1. N. Ramachandran, "Volleyball: Steps to Success", Sports Publication

E-Resources:

1. <https://coachtube.com/course/volleyball/volleyball-for-beginners/7004>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: I				
Course: Liberal Learning – I (Football)					Code: 25RACC102J				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance players' technical skills, tactical understanding, physical fitness, teamwork, and sportsmanship, fostering a comprehensive understanding and appreciation of the game.

Course Outcomes: After completion of this course, students will be able to -

CO1	To identify and describe the fundamental skills and strategies involved in football, including ball control, dribbling techniques, basic offensive and defensive tactics.
CO2	To apply advanced dribbling and passing techniques during practice sessions.
CO3	To design and execute a cohesive game plan that integrates set pieces, team chemistry, and communication, evaluating its effectiveness through simulation matches.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction and Basic Skills.	2
2.	Ball Control and Movement.	2
3.	Advanced Dribbling and Passing.	2
4.	Shooting and Finishing.	2
5.	Offensive Tactics.	2
6.	Defensive Tactics.	2
7.	Set Pieces (Offensive and Defensive).	2
8.	Team Chemistry and Communication.	2
9.	Midfield Dominance.	2
10.	Forward Play and Creativity.	2
11.	Defense Organization.	2
12.	Goalkeeper Training.	2
13.	Speed and Agility.	2
14.	Simulation Matches.	2
TOTAL		28

Text Books:

1. Srinivasan J. B, "Football Coaching: A Comprehensive Guide", Sports Publishing.

Reference Books:

1. Rob Ellis, "The Complete Guide to Coaching Soccer", Meyer & Meyer Sport.

E-Resources:

1. Udemy – Soccer Courses - <https://www.udemy.com/topic/soccer/>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: I								
Course: Indian Knowledge System and Financial Literacy	Code: 15RAIK101								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	-	-	02	-	-	50	-	-	50

Prerequisites:

Basic knowledge of algebra and mathematical operations.

Course Objectives:

1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the importance of roots of Indian Knowledge System.
2. To make students proficient in fundamental financial concepts essential for managing personal finances effectively.
3. To equip students with practical budgeting skills to empower them to achieve financial independence.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand IKS fundamentals, Indian numeral system, and key contributions in mathematics and measurement.
CO2	Recognize metal working techniques, Vastushastra principles, historical engineering and architecture practices.
CO3	Understand financial concepts, money types, bank accounts, and essential financial terms for practical application.
CO4	Manage budgets, credit, loans, and develop financial plans for career and education goals.
CO5	Understand various investments, risk management, insurance types, and develop retirement planning strategies.
CO6	Comprehend tax forms, compliance, fraud protection, and financial considerations for investments and business.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Foundations of Indian Knowledge System: Definition and scope of IKS, Historical development and significance.</p> <p>Number System and Units for Measurement: Salient features of the Indian numeral system, The discovery of zero and its importance, Decimal Systems, Measurement of time, distance and weight.</p> <p>Mathematics: Unique aspects of Indian mathematics, Great mathematicians and their significant contributions in the area of arithmetic, algebra, geometry, trigonometry, binary mathematics.</p>	5
2.	<p>Application of Indian Knowledge System: Metals and Metal Working: Mining and ore extraction, Extraction of iron from Biotite by indigenous techniques, Lost wax casting of idols and artefacts, Architecture and Structures: Vastushastra, Unitary buildings and Town planning, Temple architecture. Physical structures in India, Irrigation and water management</p>	5

DEPARTMENT OF ROBOTICS AND AUTOMATION

3.	Finance: Importance of Financial Literacy for Engineers, Understanding Money, Types of Money- Cash, Cheque, UPI Payment, Digital Currency, etc Types of bank accounts - saving, salary, current, loan, etc., Basic financial Terms- Income, Expenditure, Balance, saving, loan, interest rates, compound interest rate, credit, Investment, Taxes	4
4.	Financial Planning: Personal budgeting, Understanding debit and credit card, credit score, Types of credit card, credit card payment cycle, Barrowing, Loans / Debts, Types of loans, Terms of barrowing, Loan, Interest rate, Principal, EMI, EMI Calculation, Repayment of loan/debt strategy, Financial Planning for Career Development, Higher studies,	5
5.	Investment and Wealth Management: Basics of Investing, Effect of compounding, Types of Investment (fixed deposit, recurring deposits, Insurance policies, Bonds, Mutual Funds, Stocks, real estate, etc.) Risk and Return, Concept of SIP, STP and SWP, Stock Market, Stock Exchanges, reading of stock market indices, Life insurance, healthcare insurance, vehicle insurance, Importance of early retirement planning, Investment strategy, Pension Plan, Portfolio management,	5
6.	Finance Compliance: Types of Taxes, Types of Income Tax return form and Filling, Taxes and reforms, Impact of taxation policy on Investment, Scams and Frauds, Protection of personal information, Financial consideration for starting business, Real estate and purchase	4
TOTAL		28

Text Books:

1. B. Mahadevan, Vinayak Rajat Bhat, Nagendra Pawana R. N., "Introduction to Indian Knowledge System – Concepts and Applications", PHI Learning Pvt. Ltd., New Delhi.
2. Dr. Babu V., Mr. Mohammed Umair, "Financial Literacy", Himalaya Publishing House, First Edition.

Reference Books:

1. A. K. Bag, "History of Technology in India", Vol. I, Indian National Science Academy, New Delhi.
2. Dr. S. Gurusamy, "Indian Financial System", Tata McGraw-Hill Education Pvt. Ltd 2nd Edition.
3. D.N. Bose, S.N. Sen and B. V. Subbarayappa, "A Concise History of Science in India", Indian National Science Academy, New Delhi.

E-Resources:

1. SWAYAM - "Indian Knowledge System(IKS): Concepts and Applications in Engineering", Indian Institute of Management Bangalore (IIMB), Chanakya University, Bangalore. https://onlinecourses.swayam2.ac.in/imb23_mg53/preview
2. SWAYAM - "Introduction to Banking and Financial Markets", Indian Institute of Management Bangalore (IIMB), - https://onlinecourses.swayam2.ac.in/imb23_mg14/preview
3. Online free course on "Financial Literacy" by Khan Academy. <https://www.khanacademy.org/college-careers-more/financial-literacy/xa6995ea67a8e9fdd:welcome-to-financial-literacy>

DEPARTMENT OF ROBOTICS AND AUTOMATION

SYLLABUS
SEMESTER - II

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Engineering Mathematics II					Code: 25RABS203				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	-	-	03	40	60	-	-	-	100

Prerequisites:

Basic concept of Differentiation, Integration and Vector.

Course Objectives:

1. To introduce student some methods to find the solution of first order & first degree ordinary differential equations with its applications.
2. To make students familiar with vector differentiation.
3. To acquaint the student with mathematical tools needed in evaluating improper integrals, multiple integrals and their usage.

Course Outcomes: After completion of this course, students will be able to -

CO1	Solve first order ordinary differential equation.
CO2	Apply differential equation in engineering applications.
CO3	Determine the velocity vector, gradient, divergence, curl.
CO4	Evaluate improper integrals.
CO5	Demonstrate multiple integrals for regions in the plane.
CO6	Use of multiple integrals to find area bounded by curves & volume bounded by surfaces.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	First Order Ordinary Differential Equation: Exact differential equations, Equations reducible to exact form. Linear differential equations, Equations reducible to linear form and Bernoulli's equation.	7
2.	Applications of Differential Equations: Applications of differential equations to orthogonal trajectories, Newton's law of cooling, Kirchhoff's law of electrical circuits, Rectilinear motion, Simple harmonic motion, One dimensional conduction of heat.	7
3.	Vector Differential Calculus: Velocity vector, acceleration vector, tangential and normal component of acceleration, Vector differential operator, gradient, directional derivatives, angle between surfaces, Divergence and curl, solenoidal and irrotational field.	7
4.	Integral Calculus: Reduction formulae, Beta and Gamma functions, Differentiation under integral sign and Error functions.	7
5.	Multiple Integrals: Double integration in cartesian & polar coordinates, Change of order of integration, Triple integral in cartesian & polar coordinates.	7

DEPARTMENT OF ROBOTICS AND AUTOMATION

6.	Applications of Multiple Integral: Applications to find Area, Volume, Mass, Centre of gravity and Moment of inertia.	7
	TOTAL	42

Text Books:

1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill.
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication
3. H.K.Dass, "Higher Engineering Mathematics", S.Chand Publication
4. C.Ray Wylie & L.Barrett, "Advanced Engineering Mathematics", McGraw Hill Publications.

Reference Books:

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.
2. M. D. Greenberg, "Advanced Engineering Mathematics", Pearson Education
3. Peter V. O'Neil, "Advanced Engineering Mathematics", Thomson Learning
4. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics (Vol. I & Vol. II)", Vidyarthi Griha Prakashan, Pune.
5. Ron Larson and David C. Falvo, "Elementary Linear Algebra", Houghton Mifflin Harcourt Publishing Company

E-Resources:

1. A NPTEL Course on "Engineering Mathematics-II" IIT Khargpur -
https://youtube.com/playlist?list=PLbRMhDVUMngeVrxtbBz-n8HvP8KAWBpI5&si=3xAONJdT2ph_jcvG
2. Applications of Differential Equations | Orthogonal Trajectories -
<https://www.youtube.com/watch?v=Ziu0y2kWTCM&list=PLT3bOBUU3L9juyFTI3lpeXXhIetVB00cr>
3. "Applications of Differential Equations| Newton's law of Cooling -"
https://www.youtube.com/watch?v=gJSvcf9_Duc
4. Dr. Gajendra Purohit, "Gradient of a Scalar Field & Directional Derivative | Normal Vector"
https://www.youtube.com/watch?v=9CHfHuFBTw8&list=PLU6SqdYcYsfJz9FAzbgoctJlkw4N_XAar-&index=2
5. Dr. Gajendra Purohit, "Double Integral & Area By Double Integration | Multiple Integral"
https://www.youtube.com/watch?v=db7d_a0wiUg&list=PLU6SqdYcYsfLoKyzF_dwxAQf8Ii6VC54
6. Double Integration - Change of Order of Integration | Cartesian & Polar
https://www.youtube.com/watch?v=fXMyLYwBB3s&list=PLU6SqdYcYsfLoKyzF_dwxAQf8Ii6VC54&index=4

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Engineering Chemistry					Code: 25RABS204				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	02	-	03	40	60	25	-	-	125

Prerequisites:

Basic knowledge of volumetric analysis, structure property relationship, classification and properties of polymers, electromagnetic radiation, electrochemical series.

Course Objectives:

1. To familiarize the students with the basic phenomenon/concepts of chemistry and its applications in various fields of Engineering.
2. To impart knowledge of technologies involved in water analysis to improve water quality.
3. To learn significance science of corrosion and preventive methods used for minimizing corrosion.
4. To understand structure, properties and applications of speciality polymers and nanomaterials.

Course Outcomes: After completion of this course, students will be able to -

CO1	Analyze water softening parameters.
CO2	Utilize different analytical methods for analysis of various chemical compounds.
CO3	Understand the mechanism of destruction of metals (corrosion) and effective preventive measures.
CO4	Explore the knowledge of advanced engineering materials for various engineering applications.
CO5	Analyze fuel and suggest use of alternative fuels.
CO6	Familiarize with classification, properties and applications of nanomaterials.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Water Technology: Introduction, Chemical Analysis of Water- Hardness; Temporary and Permanent, Alkalinity (Hydroxide, Carbonate and Bicarbonate), Softening Methods: Zeolite and Demineralization Process, Water Purification: Reverse Osmosis. Simple Numerical on Hardness Determination and Alkalinity Calculation.</p>	5
2.	<p>Instrumental Methods of Analysis: Types of analysis: Quantitative and Qualitative analysis Introduction, Instrumentation and Applications of following methods: Colorimetry, pHmetry (Titration of Strong acid versus Strong base), Conductometry (Titration of Strong acid versus Strong base)</p>	5
3.	<p>Corrosion Science: Introduction, Types of Corrosion-Dry and Wet corrosion, Wet Corrosion Mechanism: Hydrogen Evolution and Oxygen Absorption, Factors affecting rate of corrosion. Methods of prevention of corrosion: Cathodic Protection (Sacrificial Anode), Anodic Protection (Anodizing), Methods to apply Metallic</p>	4

DEPARTMENT OF ROBOTICS AND AUTOMATION

	Coatings-Hot dipping, Electroplating.	
4.	Engineering Polymers: Polymers: Introduction, Definition of Polymer, Monomer and Functionality of monomers Speciality Polymers: Introduction, Preparation, Properties and Applications of the following polymers: 1. Engineering Thermoplastic: Polycarbonate 2. Conducting Polymer: Polyacetylene Polymer Composites: Introduction, Constituents of composite, Advantages over conventional materials, Applications, Fiber Reinforced Plastic (FRP)-Glass reinforced and Carbon reinforced.	5
5.	Fuels and Combustion: Introduction, Calorific value - Definition, Gross and Net calorific value, Determination of Calorific value: Principle, Construction and Working of Bomb Calorimeter (Simple Numerical), Solid fuel: Coal: Analysis of Coal-Proximate (Simple Numerical). Alternate fuels: Biodiesel and Power alcohol. Hydrogen as future fuel: Production, Advantages, Storage and Applications in Hydrogen fuel cell.	5
6.	Nanomaterials: Introduction, Classification of Nanomaterials Based on Dimensions, Nanoscale materials: Structure, Properties and Applications of Graphene and Quantum dots (semiconductor nanoparticles), Importance of Nanotechnology in engineering applications.	4
TOTAL		28

List of Experiments:**A. Lab Experiments (Any Seven)**

1. Determination of hardness of water by EDTA method.
2. Determination of alkalinity of water.
3. Determination of strength of strong acid using pH meter.
4. Determination of maximum wavelength of absorption of $\text{CuSO}_4/\text{FeSO}_4/\text{KMnO}_4$, verify Beer's law and find unknown concentration of given sample.
5. Titration of a mixture of strong acid with strong base using Conductometer.
6. Preparation of phenol-formaldehyde/urea-formaldehyde resin.
7. Proximate analysis of coal.
8. Coating of copper or zinc on iron plate using electroplating.
9. Determination of the molecular weight of a polymer by using Ostwald's Viscometer.

B. Demonstration (virtual) (Any One)

10. Demonstration of effect of environmental conditions on metal by weight loss method.
11. Synthesis of oxide nanoparticles.

Text Books:

1. O.G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd.
2. Dara S. S., Umare S. A., "Textbook of Engineering Chemistry", 12th Ed, S. Chand & Com Ltd.

DEPARTMENT OF ROBOTICS AND AUTOMATION

3. Jain and Jain, "Engineering Chemistry", 16th Ed, Dhanpat Rai and Co. (Pvt.) Ltd., Delhi.

Reference Books:

1. G. R. Chatwal & S. K. Anand, "Instrumental Methods of Chemical Analysis", Himalaya Publishing House.
2. Dr. Sunita Rattan; A Textbook of Engineering Chemistry; 3rd Ed, S. K. Kataria & Sons, New Delhi
3. V. R. Gowarikar, N. V. Viswanathan, Jayadev Sreedhar, "Polymer Science", Wiley Eastern Limited.
4. Billmeyer F. W., "Textbook of polymer science", John Wiley and Sons.
5. B. Sivasankar, "Engineering Chemistry", Tata Mcgraw-Hill Education Publishing company Limited.
6. G. L. Hornyak, J. J. Moone, H. F. Tihhale, J. Dutta "Fundamentals of Nanotechnology", CRC press.

E-Resources:

MOOC / NPTEL/YouTube Links:

1. NPTEL Course on Corrosion, IISc Bangalore : <http://nptel.ac.in/courses/113108051/>
2. NPTEL Course on Polymer, IIT Kharagpur: <http://nptel.ac.in/courses/104105039/>,
<http://nptel.ac.in/courses/104103071/40>
3. NPTEL Course on Water Technology, IIT Kanpur: <http://nptel.ac.in/courses/105104102/>
4. NPTEL Course on UV-Visible Spectroscopy: <http://nptel.ac.in/courses/102103044/4>
5. NPTEL Course on Energy Sources: <http://nptel.ac.in/courses/103105110/4>
6. NPTEL Course on "Engineering Chemistry-I", <https://nptel.ac.in/courses/122/106/122106028/>
7. NPTEL Course on "Fundamentals of Spectroscopy", NCL, IISER Pune
<https://nptel.ac.in/courses/104/106/104106122/>

Virtual Labs:

1. PICT Pune: <http://chemistryvl.pict.edu/#/>
2. NITK Surathkal: Hardness of water: <https://ee1-nitk.vlabs.ac.in/exp/determination-of-hardness/simulation.html#>
3. NITK Surathkal: Alkalinity of water: <https://ee1-nitk.vlabs.ac.in/exp/determination-of-alkalinity/simulation.html>
4. IIT Hyderabad: Colorimeter, verification of Beer's law, <https://mas-iiith.vlabs.ac.in/exp/beer-law/simulation.html>
5. IIT Kanpur: Preparation of phenol-formaldehyde resin, <http://ebootathon.com/labs/beta/chemistry/EngineeringChemistryLab/exp1/simulation.html>
6. Amrita University: Determination of viscosity average molecular weight polymer, https://pcv-au.vlabs.ac.in/physicalchemistry/Determination_of_ViscosityAverageMolecularWeightofPolymer/

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Fundamentals of Electrical Engineering					Code: 25RAES203				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	02	-	04	40	60	25	-	-	125

Prerequisites:

Basic knowledge of Physics, fundamental electrical principles, and Basics of linear algebra.

Course Objectives:

1. To familiarize students with the fundamentals of Electrical Engineering.
2. To make students aware about the functioning of electrical machines, batteries, and their applications.
3. To introduce students to the components of low-voltage electrical installations and the methodology for estimating energy bills.

Course Outcomes: On completion of the course, the learner will be able to -

CO1	Understand work, power, and energy relationships, unit conversions, and Lead Acid and Lithium-Ion battery charging/discharging processes.
CO2	Analyze simple resistive circuits powered by DC supply using circuit theorems.
CO3	Interpret voltage, current, and phase relationship for RLC loads.
CO4	Examine voltage, current, and power relationships in star and delta AC circuits, including protection systems.
CO5	Explain the operational principle of transformers and energy bill calculation for domestic consumers.
CO6	Explain the operational principle of DC and AC machines.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	<p>Work, Power and Energy and Batteries:</p> <p>Basic Definition and Units: Length, Mass, Time, Temperature, Area, Volume, Acceleration, Density, Velocity, Pressure, Work, Energy, Torque, Power, Voltage, Current, Resistance, Capacitance, Conductance, Charge, Inductance, Frequency, Impedance etc., Multiples and Submultiples, Types of units (MKS, CGS and SI), Unit conversions.</p> <p>Work, Power and Energy: Effect of temperature on resistance, resistance temperature coefficient (derivation and numerical), insulation resistance of single core cable (derivation and numerical), conversion of energy from one form to another in electrical, mechanical, and thermal systems.</p> <p>Batteries: Lead acid and Lithium Ion battery – (Construction, working, charging and discharging and its applications), concept of depth of charging, state of charge of battery, battery capacity, battery efficiency, ampere-hour and watt-hour of battery, maintenance of batteries, and series-parallel connection of batteries.</p>	07
2.	<p>DC Circuits:</p> <p>Analysis of series and parallel circuits, KVL and KCL (statement, sign convention), ideal and practical voltage and current sources, simple mesh and node</p>	07

DEPARTMENT OF ROBOTICS AND AUTOMATION

	analysis, source transformation (simple numerical), star-delta transformation (simple numerical), Superposition and Thevenin's theorem (Statement and numerical - only for independent sources, and resistive circuit).	
3.	AC Circuits (Single phase circuits): Generation of sinusoidal voltage, representation of sinusoidal waveforms, concept of cycle, period, frequency, instantaneous, peak, average, and RMS values, Lagging, leading and in phase quantities and their phasor representation, Rectangular and polar representation of phasors, Concept of real, reactive, apparent, complex power and power factor, Analysis of single-phase AC series circuit (pure R, L, C and series R-L, R-C, and R-L-C combinations), Concept of impedance, admittance, voltage-current, power waveforms and relevant phasor diagrams for different combinations.	07
4.	AC Circuits (Three-phase circuit) and Electrical Installations: AC Circuits (Three-phase circuit): Concept of three-phase supply and phase sequence, Three-phase balanced circuits, voltage and current relations in star and delta connections, and power calculations. Electrical Installations: Components of LT Switchgear: Fuse, MCB, MCCB (working, advantages, disadvantages and applications), Earthing - (Definition, importance of earthing, types, advantages of earthing, difference between earthing and neutral).	07
5.	Single Phase Transformer: Construction, working principle and EMF equation of transformer, Ideal and practical transformer, Losses, Types of transformers (Step up and step-down transformer), Concept of voltage regulation and efficiency (simple numerical), Introduction to auto-transformer (Construction, working, advantages and applications). Electricity Bill: Power rating of household appliances, Definition of “unit” used for consumption of electrical energy, Two-part electricity tariff, Calculation of electricity bill for domestic consumers.	07
6.	DC Machines: DC generator and motor (Construction, working principle, types, and applications), emf equation of DC generator, (Simple numerical). Voltage expression of generator and motor (Simple numerical), Concept of back-emf (simple numerical), Armature and shaft torque equation (only descriptive treatment). AC Machines: Constructional features, working principle of three-phase induction motor, types (squirrel cage and slip ring), concept of synchronous speed, rotor speed, slip, power stages in three phase induction motor, concept of torque equation of three phase induction motor, torque-slip characteristics, industrial applications of induction motor.	07
TOTAL		42

List of Experiments:**Group A: Minimum SIX experiments from the following list**

1. Demonstration of measurement of various units and their conversions.
2. Measurement of insulation resistance of electrical equipment/cable using Megger.
3. Verification of Superposition theorem with DC supply using hardware.
4. Verification of Thevenin's theorem with DC supply using hardware.
5. Measurement of the steady-state response of series RL and RC circuits on AC supply and observations of voltage and current waveforms on a storage oscilloscope.

DEPARTMENT OF ROBOTICS AND AUTOMATION

6. Verification of the relation between phase and line quantities in three-phase balanced star and delta connections of load.
7. Demonstration of different types of electrical protection equipment such as fuses, MCB, MCCB, and earthing systems.
8. Calculation of efficiency and voltage regulation of single-phase transformer by direct loading test.
9. Demonstration of cut-out sections of machines: DC machine (commutator-brush arrangement), Induction machine (squirrel cage rotor).
10. Analysis of LT electricity bills and energy conservation (Case study).

Group B: DIY Models – Any TWO, from the following list or any other suitable model

1. Demonstration of fundamental laws of Electrical Engineering using breadboard – (a) Ohm's Law (b) Faraday's law of Electromagnetic Induction (c) Kirchhoff's laws (KCL and KVL).
2. Generation of power with magnets and copper wire.
3. Conversion of mechanical energy to electrical energy and vice versa.
4. Model of mutual induction in the transformer.

Group C: A mandatory visit to any transformer/electrical machines manufacturing industry.

Text Books:

1. B.L. Theraja, A. K. Theraja, "A Textbook of Electrical Technology" - Volume I: Basic Electrical Engineering," S. Chand Publication.
2. V. K. Mehta, Rohit Mehta, "Basic Electrical Engineering," S. Chand and Company Private Ltd.
3. D. P. Kothari, I.J. Nagrath, "Theory and Problems of Basic Electrical Engineering," PHI Publication.
4. Bharti Dwivedi, Anurag Tripathi, "Fundamental of Electrical Engineering," Wiley Publication.

Reference Books:

1. E. Hughes, "Electrical and Electronics Technology," Pearson Publication.
2. L. S. Bobrow, "Fundamentals of Electrical Engineering," Oxford University Press.
3. H Cotton, "Electrical technology," CBS Publications.
4. D. C. Kulshreshtha, "Basic Electrical Engineering," McGraw Hill.

E-Resources:

1. A NPTEL Course on "Fundamentals of Electrical Engineering", IIT Kharagpur:
Link: <https://archive.nptel.ac.in/courses/108/105/108105112/>
2. A NPTEL Course on "Basic Electrical Technology," IISc Bangalore:
Link: <https://archive.nptel.ac.in/courses/108/108/108108076/>
3. Virtual lab – Amrita Vishwa Vidyapeetham:
Link: <https://vlab.amrita.edu/?sub=1&brch=75>
4. Electrical Engineering Basics:
Link: <https://www.classcentral.com/classroom/youtube-electrical-engineering-basics-54532>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: II								
Course: Engineering Mechanics	Code: 25RAES204								
Teaching Scheme				Evaluation Scheme					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
02	-	-	02	40	60	-	-	-	100

Prerequisites:

1. Fundamental grasp of physics, particularly mechanics, including concepts such as force, motion, and equilibrium.
2. Proficiency in mathematics, especially algebra, trigonometry, and calculus.
3. Understanding concepts related to forces, Stress strain etc.
4. Familiarity with engineering principles and terminology, as well as basic knowledge of materials and their properties.

Course Objectives:

1. Understand mechanics laws and apply force principles to analyze statics in two dimensions, including force systems and force couple systems.
2. Define and apply equilibrium principles, including Lami's theorem and free body diagrams, to analyze equilibrium in two dimensions.
3. Determine reactions and analyze beams and trusses using methods of joints and sections.
4. Calculate centroids, centers of mass, and moments of inertia for laminas, applying area moment of inertia concepts.
5. Describe friction characteristics, apply friction laws, and analyze frictional forces on various surfaces and objects.
6. Analyze rectilinear and curvilinear motion kinetics, apply work-energy principles, and analyze collisions using impulse-momentum principles.

Course Outcomes: After completion of this course, students will be able to -

CO1	Apply principles of mechanics to analyze forces and moments on particles and rigid bodies.
CO2	Analyze reactions and forces in statically determinate beams and trusses using engineering principles.
CO3	Calculate centroid, center of mass, and moment of inertia for various shapes.
CO4	Analyze frictional forces and solve problems related to static and dynamic friction on different surfaces and objects.
CO5	Calculate position, velocity and acceleration of particle using principles of kinematics.
CO6	Calculate position, velocity and acceleration of particle using principles of kinetics and Work, Power, Energy.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Analysis of Force Systems: Introduction, Units and dimensions, Laws of mechanics, Force, Characteristics, force system ,Varignon's theorem, Force couple system, Equilibrium and equilibrant, Conditions of equilibrium, Principles of equilibrium, Lami's theorem,	5

DEPARTMENT OF ROBOTICS AND AUTOMATION

	Free body diagram, Action and reaction.	
2.	Analysis of Statically Determinate Beams and Truss: Beams: Types of beams and types of supports, Reactions of simple beams and reactions of Cantilever beams, Statically determinate beams. Truss: Two force members, analysis of plane truss using method of joints and sections.	4
3.	Centroid and Moment of Inertia: Centroid and centre of gravity – Centroid of plane and composite figures – Centre of gravity of solid figures - Area moment of inertia of plane and composite figures – Parallel axis theorem and perpendicular axis theorem - Mass moment of inertia – Comparison of mass moment of inertia and area moment of inertia.	5
4.	Friction: Nature and characteristic of friction, static and dynamic friction, laws of friction, angle of friction, angle of repose, cone of friction. Introduction to Block friction on horizontal and inclined planes, wedge friction. Ladder friction and Belt friction.	4
5.	Kinematics: Introduction, basic concept, rectilinear motion: motion with uniform acceleration, gravitational acceleration and variable acceleration, curvilinear motion: rectangular components, motion of projectile, normal and tangential components	5
6.	Kinetics: Introduction, Newton's second law of motion, equation of motion, Newton's law of gravitation, application of Newton's second laws to rectilinear and curvilinear motion, , impulse momentum principle and impact .	5
TOTAL		28

List of Experiments:

1. Verification of law of parallelogram of forces/polygon of forces.
2. To determine the support reaction of simple/compound beams.
3. Determination of coefficient friction of belt/inclined plane.
4. To determine forces in the members of the space force system.
5. To study the curvilinear motion.
6. Determination of coefficient of restitution.
7. Assignment of five problems on every unit to be solved during practical
8. Any two assignments of the following by graphical method using any drawing software.
 - a. To determine the resultant of the general force system.
 - b. To determine unknown forces of concurrent force system

Text Books:

1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers: Statics and Dynamics", 12th Edition, McGraw Hill Education, 2019.
2. Bhavikatti, S S, "Engineering Mechanics", 7th edition, New Age International (P) Limited Publishers, 2019.

Reference Books:

1. Hibbeler, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education, 2009.

DEPARTMENT OF ROBOTICS AND AUTOMATION

2. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., (2005).
3. Timoshenko S, Young D. H, Rao J. V, SukumarPati, "Engineering Mechanics", 5th Edition, Tata McGraw-Hill Education, 2017.
4. Vela Murali, "Engineering Mechanics", Oxford University Press, 2010.

E-Resources:

1. NPTEL: [Engineering Mechanics - Course \(nptel.ac.in\)](https://nptel.ac.in/courses/101/101/101010101)
2. MIT OpenCourseWare: [Engineering Dynamics | Mechanical Engineering | MIT OpenCourseWare](https://ocw.mit.edu/courses/mechanical-engineering/mechanical-engineering-dynamics/)
3. MIT OpenCourseWare: [Engineering Mechanics I | Civil and Environmental Engineering | MIT OpenCourseWare](https://ocw.mit.edu/courses/civil-and-environmental-engineering/mechanics-i-civil-and-environmental-engineering/)

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II					
Course: Introduction to Robotics & Automation					Code: 25RAPC201					
Teaching Scheme					Evaluation Scheme					
Lecture	Practical	Tutorial	Credit		CIE	ETE	TW	OR	PR	Total
03	-	-	03		40	60	-	-	-	100

Prerequisites:

1. Comprehending the fundamental concepts, Basics of mechanics, Knowledge of electrical & electronics.
2. Knowledge of mathematics, particularly algebra, geometry, and trigonometry.
3. Knowledge of programming fundamentals & languages

Course Objectives:

1. To expose the students to fundamentals of Robotic systems and its application in Industrial Automation.
2. To explore the anatomy of robots, including their components such as sensors, actuators, controllers.
3. To understand mechanisms and coordinate systems, and various manipulator configurations.
4. To gain knowledge on the industrial automation process and understand the application of PLCs.
5. To understand robot programming and languages for manufacturing automation and VAL language applications for motion control.
6. To explore recent advancements in robotics and automation, including emerging trends such as AI, machine learning.

Course Outcomes: After completion of this course, students will be able to -

CO1	Apply the fundamentals of robotic systems and understand the coordinates and mechanisms involved in various robotic manipulators.
CO2	Explain components like sensors, actuators, and controllers, as well as mechanisms, coordinate systems, and manipulator configurations.
CO3	Apply the usage of grippers and various drive systems in robotic manipulators and process automation.
CO4	Apply their knowledge to understand the industrial automation process, including the application of PLCs systems.
CO5	Analyze robot programming for manufacturing automation, including the use of VAL language for motion control.
CO6	Identify recent advancements in robotics and automation, including emerging trends such as AI and machine learning and to assess their impact on industrial applications.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to Robotics and Automation: Evolution from Industrial Revolution to Industrial 5.0, Introduction to Automation, basic elements of automated system, components of automation and process control.	8

DEPARTMENT OF ROBOTICS AND AUTOMATION

	Evolution of robotics, Laws of Robotics, Robot Anatomy-Definition, Terminology of Robotics, Classification of Robots based on various technical parameters, Workspace, Work Envelope, and Operating Envelope and its importance. Kinematic Links, Pair, Chain, Degree of Freedom, Redundant DOF and Degree of Mobility. Introduction to Coordinate and Classification of Robot Coordinate System.	
2.	Robot Sensors & Actuators: Sensors: Definition, Types of Sensors: Conventional & Modern Sensors, Role of sensors in robot perception, Selection criteria of Sensors for different application in Robotics. Actuators: Definition, Types (electric, hydraulic, and pneumatic), and their roles in robot movement. Integration of Sensors and Actuators in Robotics.	7
3.	Grippers and Drive Systems: End-Effectors: Grippers, Tools, Selection of grippers and tools. Drive Systems: Electrical Drive System, Hydraulic & Pneumatic Drive System and their Comparison	7
4.	Industrial Process Automation: Introduction to Fluid Mechanics and its relevance in robotics, Pneumatic and Hydraulic systems in robotics, Applications of Pneumatic and Hydraulic systems. Introduction to Industrial Process Automation, Types of Automation Systems, Introduction to PLC.	8
5.	Robot Programming & Languages: Robot controller- major components, operating mode of robot, Jogging-Types, Motion commands, end effectors and sensors commands, Robot Languages- Classifications - Teach Pendant Method, Lead-through Programming, Basic commands for Pick and Place operation. Introduction to Simulation Software's – like MATLAB / RoboAnalyzer / RoboDK / RoboStudio / CoppeliaSim (VREP).	7
6.	Recent Advancements in Robotics and Automation: Emerging trends and technologies in robotics: Artificial Intelligence, Machine Learning, Adaptive Control, Soft Robotics, Bio-Inspired Robotics, Aerial Robotics, and their applications. Industrial Internet of Things (IIOT), Internet of Robotic Thing.	5
TOTAL		42

Text Books:

1. John J. Craig, "Introduction to Robotics: Mechanics and Control", Pearson Edu.
2. K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, "Robotics: Control, Sensing, Vision, and Intelligence", Tata McGraw Hill.
3. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing" Pearson Edu.

Reference Books:

1. Nikolaus Correll, Bradley Hayes, and Alcherio Martinoli, "Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms", MIT Press
2. Kevin M. Lynch and Frank C. Park, "Modern Robotics: Mechanics, Planning, and Control", Cambridge University Press.

DEPARTMENT OF ROBOTICS AND AUTOMATION

3. Thomas R. Kurfess., "Robotics and Automation Handbook", CRC Press.

E-Resources:

1. NPTEL: "Introduction to Robotics" by IIT, Kanpur ,
https://onlinecourses.nptel.ac.in/noc24_me88/preview
2. Coursera: "Robotics Specialization" by University of Pennsylvania,
<https://platform.onlinelearning.upenn.edu/offering/robotics-specialization-a0Q2E00000JmMPhUAN>
3. MIT Open Courseware: "Introduction to Robotics" <https://ocw.mit.edu/courses/2-12-introduction-to-robotics-fall-2005/pages/>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: II								
Course: Computer Aided Engineering Drawing	Code: 25RAVS202								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	PR	OR	Total

-	02	-	01	-	-	-	50	-	50
---	----	---	----	---	---	---	----	---	----

Prerequisites:

Knowledge of geometry, solids, engineering drawing concepts, orthographic views, isometric views, knowledge of units and measurements, basic skills handling computer devices

Course Objectives:

1. To introduce students to the fundamentals of CAD software and its applications in engineering drawing.
2. To develop proficiency in using CAD software for creating, editing, and managing 2D and 3D drawings.
3. To enhance students' skills in precision drawing, dimension, and annotation using CAD tools.
4. To prepare students to undertake CAD projects and customize CAD software for specific engineering applications.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate basic CAD drawing commands and navigate the CAD interface effectively.
CO2	Utilize object selection methods and manage layers and properties in CAD drawings.
CO3	Apply advanced drawing commands and precision techniques to create detailed CAD drawings.
CO4	Use modifying tools and dimensioning to edit and annotate CAD drawings accurately.
CO5	Perform advanced editing and create 3D models using CAD software.
CO6	Develop a CAD project, customize the workspace, and apply CAD standards and practices.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to CAD and Basic Drawing Commands: Introduction to CAD and CAD Software, Overview of CAD and its applications, Introduction to various CAD software tools. Understanding the CAD Interface, Workspace, ribbon, command line, and toolbars, Navigating the CAD interface. Units and Measurement, setting up units, Understanding measurement systems in CAD. Basic Drawing Commands, Line, Circle, Arc, Rectangle, Polygon. Editing Commands, Erase, Move, Copy, Mirror, Rotate.	4
2.	Object Selection and Layer Management: Object Selection Methods, Selecting objects: Select, Window, Crossing, Fence, Using selection filters and quick select. Using Layers and Properties, creating layers, assigning colors, line types, and line weights, Managing layer properties and visibility.	4
3.	Advanced Drawing Commands and Precision Techniques: Advanced Drawing Commands, Polyline, Spline, Ellipse, Hatch, Region. Working with Blocks and Attributes, Creating, inserting, and editing blocks, Understanding	4

DEPARTMENT OF ROBOTICS AND AUTOMATION

	and using attributes. Precision Drawing Techniques, Polar tracking, Object snaps, Ortho mode.	
4.	Modifying Tools and Dimensioning: Introduction to Modifying Tools, Stretch, Scale, Trim, Extend, Inquiry Commands, Distance, Area, ID, List. Dimensioning Basics, Linear dimensions, aligned dimensions, Radius and Diameter dimensions, Annotation Tools, Text, Multiline Text, Leaders, Adding and managing annotations.	4
5.	Advanced Editing and 3D Modeling: Advanced Editing Commands, Offset, Fillet, Chamfer, Array. Advanced Modification Tools, Advanced use of Stretch, Scale, Rotate, Mirror. Introduction to 3D Modeling, Basics of Wireframe, Surface, and Solid modeling, Creating and Editing 3D Objects, Extrude, Revolve, Sweep. Applying materials and textures, Rendering and Visualization, Introduction to rendering techniques, Visualization and presentation of 3D models.	6
6.	Project Work, Customization, and Standards: Project Work, designing a simple mechanical or architectural component, Adding dimensions, annotations, and detailing. Customization in CAD, Workspace customization, Creating and using shortcut keys and tool palettes. Plotting and Printing, Preparing drawings for output, Plotting and printing techniques. Review and Assessment, Review of the CAD project, Assessment and feedback.	6
TOTAL		28

List of Experiments:**Minimum 6 exercises should be completed**

1. Drawing Simple Shapes: Create basic geometric shapes such as squares, circles, and triangles using line, circle, and polyline tools.
2. Generate given simple orthographic view in CAD software, using basic draw and modify command.
3. Technical Drawing Practice (at least 2 components): Present students with a technical drawing containing various mechanical parts. Instruct them to redraw the components using advanced drawing commands like arcs, splines, and ellipses.
4. Isometric Drawing (at least 2 components): Generate an isometric drawing of a simple object, using CAD's isometric snap grid and tools.
5. Editing Objects (at least two drawings): Provide students with a drawing containing various objects and ask them to practice editing commands such as move, copy, rotate, and scale to modify the objects according to given specifications.

OR

6. Parametric Drawing: Introduce students to parametric drawing by asking them to create a simple parametric object, such as a door or window, with adjustable dimensions using CAD parametric constraints.
7. CAD Project Development: Assign a project where students have to draw the drawing of component using CAD software.

OR

8. AutoCAD Customization: Encourage students to explore AutoCAD customization options by

DEPARTMENT OF ROBOTICS AND AUTOMATION

creating custom line types, hatch patterns, and dimension styles.

Text Books:

1. Bhatt, N. D. and Panchal, V. M., (2016), "Engineering Drawing", Charotar Publication.
2. K. Venugopal, K, (2015), "Engineering and Graphics", New Age International.

Reference Books:

1. AUTOCAD® 2019, BEGINNING AND INTERMEDIATE, Munir M. Hamad, Autodesk Approved Instructor, Mercury Learning And Information LLC. ISBN: 978-1-683921-76-9

E-Resources:

1. AutoCAD Quick Start Guide – <https://www.autodesk.com/learn/ondemand/curated/autocad-quick-start-guide>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Skill-Building with Arduino					Code: 25RAVS203				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic Electronics Engineering, Electronics Circuit Design.

Course Objectives:

1. To provide students with a thorough understanding of the Arduino platform, including its types, features, and the necessary software tools for programming and development.
2. To teach students the basics of Arduino programming using Embedded C, including digital and analog input/output handling, LCD interfacing, and serial communication.
3. To enable students to design and implement practical applications such as home automation and IoT projects using Arduino, focusing on program testing and device integration.

Course Outcomes: After completion of this course, students will be able to -

CO1	Distinguish between digital and analog signals, provide examples of each, and understand their significance in communication methods.
CO2	List various digital and analog sensors and output devices, and understand how to program and interface them with Arduino for practical applications.
CO3	Learn to install and use the Arduino IDE, understand the structure of Arduino programming using Embedded C, and effectively utilize control structures in their projects.
CO4	Write a program for analog devices, measure parameters like room temperature, and perform calibration of sensors to ensure accurate readings.
CO5	Explain the principles of serial communication, program Arduino for serial transmission and reception, and implement practical examples like sending and receiving data via Bluetooth.
CO6	Learn the concepts of home automation and IoT, identify the necessary devices, and develop simple IoT structures using Arduino, focusing on program testing and integration.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Input and Out Devices: Digital Signal and its Example, Analog Signal and its Example, Types of communication Methods, Digital Sensors List, Analog Sensors List, Output Devices List, Serial Communication Devices List.	4
2.	Arduino Programming Basics: Introduction to C programming, What Is Embedded C, Why we Choose Embedded C, Arduino programming Structure, Control Structure in Arduino, Types Of Arduino and its Features, How to choose Arduino IC's, Software Required For Arduino, Arduino IDE Installation.	4
3.	Arduino Digital Input/output Handling: List of Digital Input/output devices, how to program for Digital Input devices, Example: Get input from Keypad, how to Program for Digital Output devices,	4

DEPARTMENT OF ROBOTICS AND AUTOMATION

	Example: LED controlling, Arduino LCD Interfacing - LCD Display Pinout, Display the Static Data, Display the Dynamic Data.	
4.	Arduino Analog Input and Calibration: List of Analog Sensors, How to Program for Analog Devices, Example: Measuring Room Temperature, What is Calibration?, Calibrate the Temperature sensor	4
5.	Arduino Serial Communication: List of Serial Communication Devices, How to program for Serial Transmission, Example: Send Data to Mobile via Bluetooth, How to program for Serial Receiving, Example: Receive Data from Mobile via Bluetooth.	6
6.	Home Automation Using Arduino: What is Home Automation?, Devices Used in home automation, Program Testing, Simple IOT structure Using Arduino What is IOT, Devices Used in IOT, Program Testing	6
TOTAL		28

List of Experiments

1. Introduction about Arduino Uno kit.
2. Introduction about IDE Software.
3. Controlling the Light Emitting Diode (LED) with a push button.
4. Interfacing the RGB LED with the Arduino Uno.
5. Controlling the LED blink rate with the potentiometer interfacing with Arduino Uno.
6. Detection of the light using photo resistor.
7. Interfacing of temperature sensor LM35 with Arduino Uno.
8. Interfacing Servo Motor with the Arduino Uno.
9. Interfacing of the Active Buzzer with Arduino Uno.
10. Interfacing of the Relay with Arduino uno.
11. Building Intrusion Detection System with Arduino and Ultrasonic Sensor.
12. Directional Control of the DC motor using Arduino Uno.

Note: The term work marks will be based on experiments and project.

Project:

Here are some guidelines to consider when planning and executing IoT projects:

- 1) Define Clear Objectives
- 2) Select Appropriate Technology
- 3) Design for Scalability
- 4) Ensure Data Security
- 5) Consider Interoperability
- 6) Focus on User Experience
- 7) Optimize Power Efficiency
- 8) Comply with Regulations
- 9) Test and Validate
- 10) Plan for Maintenance and Updates
- 11) Document and Share Knowledge
- 12) Engage Stakeholders

DEPARTMENT OF ROBOTICS AND AUTOMATION

Text Books:

1. J. M. Hughes, "Arduino: A Technical Reference", Reilly Media.
2. Jack Purdue, "Beginning C for Arduino", Springer Nature.

Reference Books:

1. William P. Osborne, "Learn to Program in Arduino C", Arduino open Source Community.
2. Warwick-A-Smith , "Arduino Uno Hardware Manual: A Reference and User Guide for the Arduino Uno Hardware and Firmware" , wepublishing.net
3. Neerparaj Raj, "Arduino Project Engineers A Multi-Purpose Book for All Branches" , BPB
4. Norman Dunbar, "Arduino Software Internals: A Complete Guide to How Your Arduino Language and Hardware Work Together" , Apress Publication

E-Resources:

1. [Essential Resources for Beginners Learning Electronics With Arduino:](https://interestingengineering.com/innovation/13-essential-resources-for-beginners-learning-electronics-with-arduino)
<https://interestingengineering.com/innovation/13-essential-resources-for-beginners-learning-electronics-with-arduino>
2. [Arduino Tutorial: https://www.javatpoint.com/arduino](https://www.javatpoint.com/arduino)
3. [Arduino Project Hub: https://projecthub.arduino.cc/](https://projecthub.arduino.cc/)

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: II								
Course: Professional Development II	Code: 25RACC203								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	04	-	02	-	-	25	-	-	25

Course Objectives:

1. To introduce students on professional development skills and its importance in building personal and professional life.
2. To bring in self-awareness and realization of Values, Self-discipline and self-grooming for betterment of life and contribution to our Society.

Course Outcomes: After completion of this course, students will be able to -

CO1	Understand the interpersonal skills importance and finding skill gaps for development.
CO2	Know how to be effective in managing our time with application of simple tools & techniques.
CO3	Know the effective components of teamwork and how to be effective in our role for team performance and goals.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Interpersonal Skills: Understanding on IP skills; Essentials of IP; How to develop IP skills.	24
2.	Time management: What is time management? Time study and mapping; Knowing the time management tools & techniques; How to apply tools & techniques for effective time management; Self-evaluation.	16
3.	Teamwork: Team and Individual thinking; Characteristics of Teamwork; Importance at work profession; Benefits	16
TOTAL		56

Text Books:

1. Dr. P. K. Sinha, "Interpersonal Skills for Managers", Sage Publications.

Reference Books:

1. John C. Maxwell and Les Parrott, "25 Ways to Win with People", Thomas Nelson, 2013.
2. Robert Bolton, "People Skills: How to Assert Yourself, Listen to Others, and Resolve Conflicts", Touchstone, 1986.
3. Chris Bailey, "The Productivity Project: Accomplishing More by Managing Your Time, Attention, and Energy", Crown Business, 2016.
4. Jon Gordon, "The Power of a Positive Team: Proven Principles and Practices that Make Great Teams Great", Wiley, 2017.

E-Resources:

1. Coursera - "Improving Your Interpersonal Skills", <https://www.coursera.org/learn/interpersonal-skills>
2. Coursera - "Leading Teams", <https://www.coursera.org/learn/leading-teams>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)				Semester: II					
Course: Liberal Learning – II (Guitar)				Code: 25RACC204A					
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Guitar musical instrument.

Course Objectives:

1. To enhance guitar skills through intermediate fingerpicking, lead techniques, and genre exploration, culminating in a polished final performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Execute intermediate fingerpicking techniques with precision and rhythm.
CO2	Apply advanced lead guitar techniques and pentatonic scales effectively.
CO3	Perform confidently across various genres including blues, rock, folk, and classical.
CO4	Deliver a polished final performance through focused practice and preparation.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Rhythm and Timing.	2
2.	Time Signatures.	2
3.	Understanding Basic Rhythms.	2
4.	Circle of Fifths.	2
5.	Introduction to Minor Scales.	2
6.	Advanced Chord Shapes.	2
7.	Introduction to Lead Techniques.	2
8.	Introduction to Pentatonic Scale.	2
9.	Practice and Review.	2
10.	Exploring Different Genres.	2
11.	Final Project Planning.	2
12.	Intensive Practice.	2
13.	Pre-Performance Preparation.	2
14.	Final Performance.	2
TOTAL		28

Text Books:

1. David Hodge, "Guitar Theory", DK Publishing.

Reference Books:

1. Russ Shipton, "The Complete Guitar Player", Published by Wise.
2. Vincent Ong, Alfred Khp, "Classical Guitar Advanced Studies Repertoires", Dynamic Publication.

E-Resources:

1. <https://www.youtube.com/watch?v=BBz-Jyr23M4>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)				Semester: II					
Course: Liberal Learning – II (Singing)				Code: 25RACC204B					
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music in singing.

Course Objectives:

1. To develop advanced singing techniques and ear training through Indian classical music, focusing on repertoire selection, effective rehearsal, and performance presentation.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master legato, staccato, and advanced vocal methods in Indian classical music.
CO2	Improve musical ear through rigorous training and diverse classical repertoire.
CO3	Apply effective rehearsal strategies to prepare and present a polished performance.
CO4	Deliver a well-executed performance of selected Indian classical pieces with artistic expression

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Vibrato and Ornamentation.	2
2.	Range Extension.	2
3.	Legato and Staccato.	2
4.	Advanced Ear Training.	2
5.	Basics of Indian Semi Classical Music.	2
6.	Improvisation Techniques.	2
7.	Selecting Repertoire for Performance.	2
8.	Rehearsal Techniques.	2
9.	Dress Rehearsal.	2
10.	Final Performance.	2
11.	Performance Review.	2
12.	Exploring New Repertoire.	2
13.	Advanced Techniques and Styles.	2
14.	Course Recap and Future Directions.	2
TOTAL		28

Text Books:

1. Dr. Theodore Dimon, "Anatomy of the Voice, This Is a Voice".

Reference Books:

1. Richard Miller, "The Structure of Singing", Schirmer Books, London.
2. Jennifer Hamady, "The Art of Singing", Published by Hal Leonard.

E-Resources:

1. <https://www.youtube.com/watch?v=4hNq9qykOyE>
2. <https://www.youtube.com/watch?v=b14gkmECz-Y>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Cinematography)					Code: 25RACC204C				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

A basic understanding of film theory, Camera operation, Lighting techniques and visual storytelling is essential for cinematography.

Course Objectives:

1. To master videography by learning camera techniques, shooting methods, and editing, culminating in a final project showcasing advanced skills in video production.

Course Outcomes: After completion of this course, students will be able to -

CO1	Operate camera components and techniques for steady, sharp video shooting.
CO2	Apply rule of thirds, framing, and stabilization methods effectively.
CO3	Use advanced editing tools and sound design for polished video projects.
CO4	Deliver a comprehensive final video project demonstrating learned skills.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Videography	2
2.	Understanding camera components (lens, sensor, viewfinder)	2
3.	Techniques for steady shooting (tripods, handheld, gimbals)	2
4.	Understanding the rule of thirds, leading lines, and framing in video	2
5.	In-depth explanation of the exposure triangle: aperture, shutter speed, and ISO	2
6.	Importance of audio in videography	2
7.	Techniques for achieving sharp focus	2
8.	Motion and Stabilization	2
9.	Storyboarding and Planning	2
10.	Filming Techniques	2
11.	Introduction to Video Editing	2
12.	Introduction to advanced editing tools (color correction, audio editing, effects)	2
13.	Sound Design and Mixing	2
14.	Final Project Presentation and Review	2
TOTAL		28

Text Books:

1. Tania Hoser, "Introduction to Cinematography", Taylor & Francis.

Reference Books:

1. Anat Pick, "Screening Nature", Berghahn Books.
2. Blain Brown, "Cinematography: Theory and Practice", Taylor & Francis.

E-Resources:

1. <https://youtu.be/V7z7BAZdt2M?si=to4yQ46zEKRbxK0m>
2. https://youtu.be/WXdAX0No2hM?si=GZu_mJsmyJ7NGnAU

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Dance)					Code: 25RACC204D				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Good stamina, flexibility and familiarity with simple rhythmic patterns and beats.

Course Objectives:

1. To develop advanced dance techniques, expressive skills, and performance readiness in Indian classical dance, culminating in a final performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Develop advanced techniques in footwork, postures, and hand gestures, with a focus on fluidity and expression.
CO2	Embody various characters and emotions through in-depth exploration of Abhinaya (expressional dance).
CO3	Execute learned dance pieces with precision, synchronization, and advanced rhythmic variations.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Introduction to Character Portrayal.	2
2.	Rehearsal and Feedback.	2
3.	Advanced Footwork and Postures.	2
4.	Advanced Hand Gestures and Movements.	2
5.	Rhythmic Variations and Combinations.	2
6.	Rehearsal of Dance Piece.	2
7.	Performance Techniques.	2
8.	Integrating Steps and Expressions.	2
9.	Full Dress Rehearsal.	2
10.	Improvisation and Creative Movement.	2
11.	Corrections and Adjustments.	2
12.	Mini Performance.	2
13.	Introduction to Abhinaya in Depth.	2
14.	Preparing a New Short Dance Item.	2
TOTAL		28

Text Books:

1. Kapila Vatsyayan, "Indian Classical Dance", Publications Division Ministry of Information & Broadcasting.

Reference Books:

1. Shubhada Varadkar, "The Glimpse of Indian Classical Dance", Krimiga Books, Krimiga Content Development Pvt. Ltd.

E-Resources:

1. https://youtu.be/VP2jLLk8_jA?si=zg6_muy1w7jE5mbi
2. <https://youtu.be/xZEP4XupwJA?si=YBt3RmcHxCRC2JSr>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: II								
Course: Synthesizer (Keyboard)	Code: 25RACC204E								
Teaching Scheme (Hrs/week)	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic knowledge of Indian classical music and Keyboard musical instrument.

Course Objectives:

1. To develop advanced musical skills through complex progressions, improvisation, and composition, culminating in a polished performance and mastery of selected repertoire.

Course Outcomes: After completion of this course, students will be able to -

CO1	Apply complex chord progressions and advanced scales effectively in performance.
CO2	Demonstrate proficiency in improvisation and advanced chord voicings.
CO3	Perform selected repertoire with refined technique and stage presence.
CO4	Successfully showcase learned skills through a polished recital or performance.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Introduction to more complex progressions (e.g., ii-V-I)	2
2.	Basics of improvisation	2
3.	Learning advanced scales (e.g., blues scale, pentatonic scale)	2
4.	Learning advanced chord voicings and inversions	2
5.	Advanced Arpeggios and Runs	2
6.	Basics of composing music	2
7.	Initial practice on selected repertoire	2
8.	Focused practice on repertoire pieces	2
9.	Understanding stage presence and performance techniques	2
10.	Final adjustments and practice on repertoire	2
11.	Attending or reviewing a masterclass	2
12.	Receiving personalized feedback on playing	2
13.	Dress rehearsal for recital or performance	2
14.	Showcasing learned skills and pieces	2
TOTAL		28 hrs.

Text Books:

1. Chuan C. Chang, Fundamentals of Piano Practice, Createspace Independent Publishing Platform

Reference Books:

1. Michael Rodman, "Keyboard for the Absolute Beginners", Alfred Publishing.
2. Davis Dorrough, "Piano Scales".

E-Resources:

1. https://youtu.be/2mPS-2guHVo?si=8X_4KKezIdrMejLH
2. <https://youtu.be/tEtukfFv3Wk?si=2iJ8wdD0dfjWauPb>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)	Semester: II								
Course: Liberal Learning – II (Basketball)	Code: 25RACC204F								
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To master advanced basketball skills, strategies, and mental conditioning to excel in team play, complex scenarios, and tournament preparation.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate mastery of advanced dribbling, passing, shooting, and defensive techniques.
CO2	Apply complex defensive systems, advanced team play, and game strategies in mixed scenarios.
CO3	Develop the mental toughness, conditioning, and strategic insights needed for successful tournament performance

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Advanced Dribbling Techniques	2
2.	Advanced Passing Techniques	2
3.	Advanced Shooting Techniques	2
4.	Advanced Defense Techniques	2
5.	Position Specific Training	2
6.	Conditioning & Strength Training	2
7.	Mental Toughness & Focus	2
8.	Advance Team Play	2
9.	Complex Defensive System	2
10.	Mixed Scenarios & Situational Drills	2
11.	Tournament Preparation	2
12.	Advance Game Play & Strategy	2
13.	Mastery & Final Assessment	2
14.	Final Scrimmage	2
TOTAL		28

Text Books:

1. K.K. Sharma, "Basketball: Skills and Drills", Sports Publications

Reference Books:

1. Dr. P.K. Kher, "Basketball Coaching: A Complete Guide", Khel Prakashan
2. S. Reddy, "The Ultimate Guide to Basketball Training", Blue Rose Publisher

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Cricket)					Code: 25RACC204G				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To develop advanced cricket skills and strategies in batting, bowling, and fielding, with a focus on mental conditioning, tactical execution, and competitive performance through intensive practice and match simulations.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate advanced techniques in batting, bowling, and fielding, including targeted drills and intensive practice.
CO2	Apply batting and bowling strategies, and execute tactical plans during match simulations and competitive play.
CO3	Develop strong mental conditioning and teamwork skills, preparing for high-performance in competitive matches and final assessments.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Batting Strategies.	2
2.	Bowling Strategies.	2
3.	Fielding Strategies.	2
4.	Match Simulations and Tactical Execution.	2
5.	Targeted Skill Improvement.	2
6.	Mental Conditioning.	2
7.	Intensive Match Simulations.	2
8.	Advanced Batting Drills.	2
9.	Advanced Bowling Drills.	2
10.	Fielding and Wicket keeping in Game Conditions.	2
11.	Game Analysis and Strategy Sessions.	2
12.	Final Skill Polishing.	2
13.	Teamwork and Communication.	2
14.	Competitive Matches and Final Assessments.	2
TOTAL		28

Text Books:

1. Sanjay Manjrekar, "Cricket Fundamentals", Orient BlackSwan
2. Ravi Shastri, "Winning Cricket: Skills and Strategies", Notion Press

Reference Books:

1. Sachin Tendulkar, "Playing It My Way", Hachette India
2. Rahul Dravid, "Cricket: The Game of Life", Penguin India

E-Resources:

1. Sports and Performance Nutrition, IIT Madras, https://onlinecourses.nptel.ac.in/noc24_hs82/preview

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Rifle and Pistol Shooting)					Code: 25RACC204H				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To achieve advanced proficiency in rifle shooting through specialized training, technical refinement, and mental preparation for competitive performance.

Course Outcomes: After completion of this course, students will be able to -

CO1	Master advanced rifle shooting techniques and positions to achieve higher scores.
CO2	Develop strong mental preparation and focus techniques for peak performance and overcoming technical hurdles.
CO3	Gain specialized training and match practice, preparing them for ISSF events and advanced shooting challenges.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Understand and learning about advance rifle position	2
2.	Advance technical knowledge	2
3.	Advance Technique Refinement	2
4.	Learning about advance shooting and technics for achieving score	2
5.	Specialized Training	2
6.	Mental Preparation and Focus	2
7.	Peak Performance and analyses	2
8.	Advanced Skills Development	2
9.	Tactical Applications and working about single shoot	2
10.	Advanced Challenges and Readiness	2
11.	Review and Consolidation	2
12.	Focus on technical and mental hurdles	2
13.	Person to person attention	2
14.	Match practice and preparation as per ISSF event	2
TOTAL		28

Reference Books:

1. David Watson, "ABCs of Rifle Shooting", Gun Digest (Imprint of KP Books), 2014

E-Resources:

1. Introduction to Exercise Physiology & Sports Performance, IIT Madras, <https://nptel.ac.in/courses/109106406>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Volleyball)					Code: 25RACC204I				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To achieve advanced proficiency in volleyball by mastering complex techniques, strategic systems, and mental conditioning, while preparing for competitive play and tournament scenarios.

Course Outcomes: After completion of this course, students will be able to -

CO1	Demonstrate expertise in advanced serving, spiking, setting, and blocking techniques tailored to specific positions.
CO2	Implement complex offensive and defensive systems and adapt to mixed scenarios through situational drills and gameplay.
CO3	Develop mental toughness, conditioning, and strategic insights necessary for successful tournament preparation and performance.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Advanced Serving Techniques	2
2.	Advanced Spiking Techniques	2
3.	Advanced Setting Techniques	2
4.	Advanced Blocking Techniques	2
5.	Position – Specific Training	2
6.	Conditioning & Strength Training	2
7.	Mental Toughness & Focus	2
8.	Game Analysis & Feedback	2
9.	Complex Offensive System	2
10.	Complex Defensive System	2
11.	Mixed Scenarios & Situational Drills	2
12.	Advanced Gameplay & Strategies	2
13.	Review & Reinforcement	2
14.	Tournament Preparation	2
TOTAL		28

Text Books:

1. Jitendra Kumar, "The Complete Guide to Volleyball", Blue Rose Publisher

Reference Books:

1. N. Ramachandran, "Volleyball: Steps to Success", Sports Publication

E-Resources:

1. <https://coachtube.com/course/volleyball/volleyball-for-beginners/7004>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II				
Course: Liberal Learning – II (Football)					Code: 25RACC204J				
Teaching Scheme (Hrs/week)				Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Proper health, Basic knowledge of rules of the game.

Course Objectives:

1. To enhance players' technical skills, tactical understanding, physical fitness, teamwork, and sportsmanship, fostering a comprehensive understanding and appreciation of the game.

Course Outcomes: After completion of this course, students will be able to -

CO1	To explain key concepts of transition play, positional drills, and the importance of endurance and stamina in football.
CO2	Apply advanced tactics during simulation matches, analyze high-pressure situations.
CO3	Students will design a game week routine that covers match preparation, mental and physical readiness, and post-match analysis, evaluating its impact on team performance and skills.

Course Contents:

Sr. No.	Description	Duration (Hrs.)
1.	Transition Play.	2
2.	Positional Drills.	2
3.	Endurance and Stamina.	2
4.	Video Analysis and Feedback.	2
5.	Advanced Tactics and Strategy.	2
6.	High-Pressure Situations.	2
7.	Leadership and Team Roles.	2
8.	Refining Skills and Tactics.	2
9.	Match Preparation.	2
10.	Mental and Physical Preparation.	2
11.	Game Week Routine.	2
12.	Post Goalkeeper Training.	2
13.	Post-Match Analysis and Recovery.	2
14.	Simulation Matches.	2
TOTAL		28

Text Books:

1. Srinivasan J. B, "Football Coaching: A Comprehensive Guide", Sports Publishing.

Reference Books:

1. Rob Ellis, "The Complete Guide to Coaching Soccer", Meyer & Meyer Sport.

E-Resources:

1. Udemy – Soccer Courses - <https://www.udemy.com/topic/soccer/>

DEPARTMENT OF ROBOTICS AND AUTOMATION

Program: B. Tech. (Robotics and Automation)					Semester: II					
Course: Quality Management System I					Code: 25RAAE201					
Teaching Scheme (Hrs/week)					Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit		CIE	ETE	TW	PR	OR	Total
-	04	-	02		-	-	25	-	-	25

Prerequisites:

Interactive mind-set for practical.

Course Objectives:

1. To acquire basic knowledge of QMS.
2. To understand the structure and requirements of a QMS.

Course Outcomes: After completion of this course, students will be able to -

CO1	Know the evolution of Quality and QMS.
CO2	Understand What is meant by Quality and its importance in an organization.
CO3	Understand the model of QMS and its objectives.
CO4	Know the standard requirements in QMS.

Course Contents:

Unit	Description	Duration (Hrs.)
1.	Quality & Standardization: Evolution of Quality and its changes, ISO for standardization, Standardization and its benefits.	14
2.	Introduction to QMS: Definition of Quality, Quality effect to organization, QMS & its benefits to organization, Terminologies.	14
3.	QMS Principles: Eight principles of QMS and its benefits – Customer focus, Leadership, People involvement, Process approach, System approach to management, Continual Improvement, Fact based decisions, Supplier relationship.	28
TOTAL		56

Text Books:

1. S. K. Bhattacharyya, "Quality Management Systems: Theory and Practice", PHI Learning.
2. M. S. B. Reddy, "Introduction to Quality Management", New Age International.

Reference Books:

1. J.M. Juran and Joseph A. De Feo, Introduction to Quality Management, McGraw-Hill Education.
2. Janet L. Horne, ISO 9001:2015 – A Complete Guide to Quality Management Systems, Quality Press.
3. Mark A. D. Hounsell, Fundamentals of Quality Control and Improvement, Wiley Publication.

E-Resources:

1. ISO 9001:2015 - Quality Management System (QMS), https://alison.com/course/iso-9001-2015-quality-management-system-qms#google_vignette
2. Coursera - Quality Improvement and Management, - <https://www.coursera.org/learn/quality-improvement-and-management>

**Zeal Education Society's
ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41**

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ROBOTICS AND AUTOMATION

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ROBOTICS AND AUTOMATION

Note - From Semester II onwards after every semester during vacation, students has to undergo for internship compulsory. The evaluation will be done in next successive semester.