ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade, ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING Curriculum Structure and Syllabus of

S.Y. B. Tech. – Electronics and Computer Engineering

(With effect from - Academic Year 2025 - 26) (2024 Pattern)

VISION OF THE INSTITUTE

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION OF THE INSTITUTE

- To achieve academic excellence through innovative teaching and learning process.
 - To imbibe the research culture for addressing industry and societal needs.
 - To inculcate social attitude through community engagement initiatives.
 - To provide conducive environment for building the entrepreneurial skills.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE –

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited / NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

VISION:

To emerge as a leading department in Electronics and Computer Engineering by imparting academic excellence, fostering innovation and research, and nurturing socially responsible and entrepreneurial professionals for sustainable technological growth.

MISSION:

- **M1:** To facilitate quality education in Electronics and Computer Engineering through innovative pedagogy and hands-on learning.
- **M2:** To foster research and development addressing real-world industrial and societal challenges.
- M3: To instill ethical values and social responsibility through active community engagement.
- **M4:** To create a conducive ecosystem for developing entrepreneurial skills and leadership Qualities using Industry-Academia Collaboration.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- **PEO1:** Graduates will establish themselves as professionals by applying core concepts of electronics and computer engineering to solve real-world problems.
- **PEO2:** Graduates will adapt to emerging technologies through lifelong learning and pursue higher education, certifications, or entrepreneurship.
- **PEO3:** Graduates will demonstrate ethical values, communication skills, and leadership qualities while working in multidisciplinary teams.

PROGRAM OUTCOMES (POs):

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE -

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited / NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

- **PSO1:** Apply principles of electronics, signal processing, and embedded systems to develop hardware/software-based solutions.
- **PSO2:** Design and implement computer engineering solutions involving databases, networking, and algorithms for real-time and data-centric applications.
- **PSO3:** Integrate domain knowledge with modern tools and technologies to solve interdisciplinary engineering problems in IoT, automation, and intelligent systems.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited / NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LIST OF ABBREVIATIONS

Abbreviation	Description
BSC	Basic Science Course
ESC	Engineering Science Course
PCC	Program Core Course
PEC	Program Elective Course
MDM	Multidisciplinary Minor
OE	Open Elective - Other than a particular program
VSEC	Vocational and Skill Enhancement Course
AEC	Ability Enhancement Course
ENTR	Entrepreneurship
EC	Economics
MC	Management Courses
IKS	Indian Knowledge System
VEC	Value Education Courses
RM	Research Methodology
CEP	Community Engagement Project
FP	Field Project
PROJ	Project
INT	Internship
OJT	On Job Training
CC	Co-curricular Courses
HSSM	Humanities Social Science and Management
ELC	Experiential Learning Course
B. Tech	Bachelor of Technology
L	Lecture
P	Practical
T	Tutorial
Н	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Evaluation
TW	Term Work
OR	Oral
PR	Project

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE –

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited / NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Second Year B. Tech. - Electronics and Computer Engineering: Semester - III

Course	Course		Teaching Scheme (hrs/Week)					Veek)	Evaluation Scheme						
Code	Type	Course Name	Τ.	I D T H		CR	CIE		ЕТЕ	TW	PR	OR	Total		
Couc	Турс		L	-			TH	PR/Tut	Total	CIL	LIL	1 **	110	OK	Total
		Digital Systems													
ECPC302	PCC	Design &	3	2	-	5	3	1	4	40	60	-	50	-	150
		Applications													
ECPC303	PCC	Data Structure and	3	2		5	3	1	4	40	60			25	125
<u>ECI C303</u>	TCC	Algorithms	3	_	-)	3	1	4	40	00	_	_	23	123
		Computer													
<u>ECPC304</u>	PCC	Organization and	3	-	-	3	3	-	3	40	60	-	-	-	100
		Architecture													
ECMD301	MDM	Engineering	3	_	_	3	3		3	40	60				100
ECMD301	MIDM	Mathematics III	3	-	-	3	3	-	3	40	00	-	-	-	100
ALOE301	OE	Open Elective – I#	2	-	-	2	2	-	2	40	60	-	-	-	100
ECMC301	HSSM-	Project Management		2		2		1	1			25			25
ECMC501	MC	System – I	_	_	-	_	-	1	1	_	-	23	_	_	23
ECVS303	VSEC	Problem Solving		2		2		1	1	_		25			25
EC V 5303	VSEC	Technique – I	_	_	-	_	-	1	1	_	-	23	_	_	23
ECCE301	CEP	Project Based		2		2		1	1			25			25
ECCESOT	CEI	Learning	_		_		1	1	1	1	1	23	_	-	23
ECVS304	VSEC	Electronics		2		2		1	1	_	_	25	_	_	25
<u>EC V 5 3 0 4</u>	VSEC	Workshop						1	1			23			<i>43</i>
ECIN302	ELC -	Internship – II	4 Weeks		· c	-	2	2		_	25	_	_	25	
LCII 1302	INT	miomsinp – n	7	** (_					23			43
	Te	otal	14	12	-	26	14	8	22	200	300	125	50	25	700

# - Select any one course from the given Open Elective Courses									
Course Code	Course Type	Open Elective - I							
ALOE301A		Digital Literacy and Applications							
ALOE301B	-	Environmental Studies							
ALOE301C		Green Energy and Sustainability							
ALOE301D	Basics of Consumer Electroni								
ALOE301E		Renewable Energy Systems							

Crahesh BoS Chairman

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE –

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited / NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Second Year B. Tech. - Electronics and Computer Engineering: Semester - IV

Course	Course		Teaching S			g Sc	hem	e (hrs/W	Evaluation Scheme						
Code	Type	Course Name	L	P	Т	Н		CR		CIF	FTF	тхи	DD	ΩP	Total
Code	Туре		L	1	1	11	TH	PR/Tut	Total	CIE	IV I IV	1 44	IK	OK	1 Otal
ECPC405	PCC	Database Management	3	2	-	5	3	1	4	40	60	ı	ı	25	125
ECPC406	PCC	Communication Systems	3	2	-	5	3	1	4	40	60	-	-	25	125
ECPC407	PCC	Object Oriented Programming	3	2	1	5	3	1	4	40	60	1	25	1	125
ECMD402	MDM	Sensors and Applications	3	-	1	3	3	1	3	40	60	-	-	ı	100
ALOE402	OE	Open Elective – II#	2	-	-	2	2	-	2	40	60	-	-	-	100
ECMC402	HSSM- MC	Quality Management System – II	-	2	-	2	-	1	1	-	-	25	-	1	25
ECAE402	AEC	Problem Solving Technique – II	-	2	-	2	-	1	1	-	-	25	-	1	25
ECVS405	VSEC	Python Programming	-	2	-	2	1	1	1	-	-	-	1	50	50
ECIN403	ELC - INT	Internship – III	4	We	ek	s	ı	2	2	-	-	25	ı	-	25
	Total			12	-	26	14	08	22	200	300	75	25	100	700

# - Select any	# - Select any one course from the given Open Elective Courses								
Course Code	Course Type	Open Elective - II							
ALOE402A		Cyber Security and Laws							
ALOE402B		Sustainability and Climate Change							
ALOE402C	OEC	Energy Audit and Electrical Safety							
ALOE402D		Digital Marketing							
ALOE402E		Entrepreneurship and Innovations							

BoS Chairman

Director

ZES's Zeal College of Engineering & Research Narhe, Pune - 411041.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDEX

Sr. No.	Course Code	Course Name	Page No.
		Second Year B. Tech. : Semester - III	
1	ECPC302	Digital Systems Design & Applications	08
2	ECPC303	Data Structure and Algorithms	11
3	ECPC304	Computer Organization and Architecture	14
4	ECMD301	Engineering Mathematics – III	16
5	ALOE301	Open Elective – I#	
6	ECMC301	Project Management System – I	18
7	ECVS303	Problem Solving Technique – I	19
8	ECCE301	Project Based Learning	20
9	ECVS304	Electronics Workshop	23
10	ECIN302	Internship – II	25
		Second Year B. Tech. : Semester - IV	
10	ECPC405	Database Management	28
11	ECPC406	Communication Systems	31
12	ECPC407	Object Oriented Programming	34
13	ECMD402	Sensors and Applications	38
14	ALOE402	Open Elective – II #	
15	ECMC402	Quality Management System – II	41
16	ECAE402	Problem Solving Technique – II	42
17	CEVS405	Python Programming	43
18	CEIN403	Internship – III	46

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

SYLLABUS SEMESTER - III

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

Semester: III

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering)

- 6			1	0	61				
Course:	Digital Systems	Design & A	plications				Co	de: ECPC	2302
	Teaching Scher	me (Hrs/weel	k)		Eval	uation S	cheme (N	Marks)	
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	02	-	04	40	60	-	-	50	150
Prerequ	isites:								
	systems (binary		-		•	d circuit	s, Boolea	n algebra	for logic
operation	ns, and fundame	ntal knowleds	ge of electro	onic com	ponents.				
Course	Objectives:								
1. Т	o provide found	lational know	ledge in coi	mbination	nal and se	equential	digital lo	ogic circui	t design.
2. Т	o enable studen	its to analyze	, design, an	d implen	nent state	machin	es and pr	ogramma	ble logic
d	evices.								
3. T	o introduce mo	dern digital d	esign techn	iques usi	ing PLDs	s, FPGA	s, and ha	rdware de	scription
la	anguages like Ve	erilog.							
Course	Outcomes: Afte	er completion	of this cour	se, stude	nts will a	ble to -			
CO1	Design and imp	lement combi	national cir	cuits usir	ng digital	compon	ents.		
CO2	Explain flip-flo _l	ps, shift regist	ers, and co	unters in	circuits.				
CO3	Analyze and des	sign FSMs, in	nplement se	quence d	letectors.				
CO4	Design circuits	using ROM, I	PLA, PAL a	and under	stand app	olication	S.		

Course Contents:

CO₅

CO6

Unit	Description	Duration (Hrs.)
1.	Combinational Circuit Design: Digital Codes: Binary, BCD, Grey, Excess-3. Code Conversions: Binary to Grey, BCD to Excess-3 and its applications. Half and Full Adder, Half & Full Subtractor, Digital Comparator, Digital Comparator with multiple inputs, Realization of Boolean functions using Multiplexer/demultiplexer, Parity generator and checker (Even & Odd).	07
2.	Sequential Circuit Design: Flip-Flops: SR, JK, D, T flip-flops, Preset & Clear operations, Truth Tables and Excitation Tables. Conversion of flip flops, Typical data sheet specifications of Flip flop, application of Flip flops. Registers: Buffer registers, Shift registers (SISO, SIPO, PISO, PIPO) Counters: Asynchronous and Synchronous Counters, Ring counter, Johnson counter, Modulus counter (IC 7490), Pulse train generator.	07

Apply digital logic using ROMs, CPLDs, and FPGAs.

Gain VLSI knowledge, understand Verilog and FPGA architecture.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	State Machines:	
	Basic design steps- State diagram, State table, State reduction, State assignment,	
3.	Mealy and Moore machines representation, Implementation, finite state machine	07
	implementation, Sequence detector. Introduction to Algorithmic state machines-	
	construction of ASM chart and realization for sequential circuit.	
	Programmable Logic Devices:	
4.	Programmable Logic Devices (PLD): Introduction to PLDs: ROM, PLA, PAL,	07
	Designing Combinational Circuits using PLDs, Applications of PLDs in digital	07
	circuit design.	
	Applications of Digital Circuits:	
_	Introduction to Digital Circuits - Design of Sequence Detector, Design of Iterative	07
5.	circuit (Comparator), Design of sequential circuits using ROM & PLAs, CPLDs &	07
	FPGAs, Serial adder with Accumulator.	
	Introduction VLSI:	
	Introduction to VLSI, Introduction to Hardware description languages (Verilog),	07
6.	Verilog Concepts, Basic concepts-Modules & ports & Functions, useful modeling	07
	techniques, Introduction to FPGA Architecture.	
	TOTAL	42

List of Experiments:

Perform a total of 8 experiments out of the 12 listed below:

- Select any 6 experiments from Group A
- Select any 2 experiments from Group B

Group A

- 1. Design and implement code converters- Binary to Gray and BCD to Excess-3
- 2. Design and implement of Half Adder/ Full Adder using a) Basic Gates b) Universal Gates
- 3. Realization of Boolean function using Multiplexer 74151/74153, Demultiplexer 74154 / 74138.
- 4. Design and implementation of 1-bit comparator and 2-bit comparator
- 5. Design and implementation of parity generator
- 6. Verify characteristic tables of SR, JK, D & T Flip-flop
- 7. Design and implementation of Asynchronous/synchronous 3-bit counter using D flip-flop
- 8. Design and implement of Sequence generator/ detector using JK flip-flop
- 9. Design and implement MOD-10 counter using IC7490

Group B

- 1. Implement a digital circuit using FPGA (Blinking LED using Simple Timer Circuit or 4-bit Binary Counter)
- 2. Building Combinatorial Circuit Using Data Flow Modeling Lab (https://download.ni.com/pub/gdc/tut/dataflow_lab.pdf)
- 3. Study modeling techniques for efficient circuit design in Verilog.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Text Books:

- 1. M. Morris Mano, Michael D. Ciletti, "Digital Logic and Computer Design", Pearson Education / Prentice Hall
- 2. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education

Reference Books:

- 1. Donald P. Leach, Albert Paul Malvino, and Goutam Saha, "Digital Principles and Applications", Tata McGraw-Hill.
- 2. Ramesh Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Pearson Prentice Hall.
- 3. Muhammad Ali Mazidi, Janice Mazidi, and Rolin McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson India / Prentice Hall PTR.
- 4. M. Morris Mano and Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL", Pearson / Pearson Prentice Hall.

E-Resources:

- 1. **Combinational Circuit Design,** [Neso Academy Combinational Logic Playlist (YouTube)] https://www.youtube.com/playlist?list=PLBlnK6fEyqRhX6r2uhhlubuF5QextdCSM
- 2. **Sequential Circuit Design,** [NPTEL Course: Digital Circuits IIT Madras] https://nptel.ac.in/courses/117/106/117106086/
- 3. **FSM and ASM Design,** [GeeksforGeeks Finite State Machines Explained] https://www.geeksforgeeks.org/finite-state-machine-types-design-working-and-applications/
- 4. **Programmable Logic Devices (PLDs),** [TutorialsPoint Programmable Logic Devices (ROM, PLA, PAL)]
 - https://www.tutorialspoint.com/digital_circuits/digital_circuits_programmable_logic_devices.ht m
- 5. Applications of Digital Circuits, YouTube Sequence Detector using Verilog
- 6. **Introduction to VLSI & Verilog,** HDLBits Verilog Practice Problems (Beginner to Advanced)] https://hdlbits.01xz.net/wiki/Main_Page

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	m: B. Tech. (E	lectronics and	d Computer	Engineer	ing)		Seme	ster: II	Ι
Course	: Data Structur	es and Algor	ithms				Code	: ECPC	C303
	Teaching Scho	eme (Hrs/we	ek)		Evalu	ation Sc	heme (Ma	arks)	
Lecture	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	02	-	04	40	60	-	25	-	125
	uisites: Fundan	nental knowl	edge of C pr	ogrammir	ıg.				
	Objectives:								
	To introduce fu		oncepts, type	es, and ope	rations of	data stru	ctures with	h attent	ion to time
	and space comp	•			. ,		1.1	1	
	To develop the	•	_	plement v	arious da	ta structu	ires like ai	rrays, I	inked lists
	stacks, queues, To enhance pro		•	a officion	t algorith	me for se	orobina s	ortina	and grant
	traversal techni		g skiiis usiii	g efficien	t aigoiitii	1115 101 50	arching, s	orung,	and graph
	Outcomes: Af	_	on of this co	urse, stude	ents will b	e able to	_		
CO1	Explain data							nnlexit	v
CO2	1							присин	· · ·
	Compare sort					complexi	ıty.		
CO3	Design and p			-					
CO4	Implement st	Implement stack, queue using arrays, lists in applications.							
CO5	Construct and	d manipulate	binary and A	AVL trees	with trav	ersals.			
CO ₆	Apply graph	techniques ar	nd algorithm	s for grap	h-based p	roblems.			
Course	Contents:								
Unit			Des	scription					Duration (Hrs.)
	Introduction	to Data Stri	ıcture:						
1.	Concept, Ty	-			-			tures,	07
	Complexities		<u> </u>	r of Growt	th, Asymp	totic Not	tation.		
2	Sorting and	_	_		a .:		a . a 1		07
2.	Sorting and S	_	=		_		Sort, Sele	ction	07
	Sort, Bubble Linear Array			search and	a Binary S	search.			
	Linear Arra	,		Arrays I	?enresents	ation of	Linear arr	av in	
		-		•	-			-	
3.	Memory, Traversing Linear Arrays, Insertion and deletion, 2D & Multi-dimensional Array, Sparse matrix.								07
= :	Linked List	• •		l Lists, R	epresentat	tion of I	Linked Lis	sts in	
	Memory, Tra				-				
	List, Deletion	from a Link	ed List, Circ	cularly Lir	ked Lists	, Doubly	Linked Li	sts.	

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	Stacks, and Queues in Data Structures:	
4.	Stacks: Introduction, Stacks, Array Representation of Stacks, Linked Representation of Stacks, Arithmetic Expression; Polish Notation, Recursion, Towers of Hanoi,	07
	Queue: Introduction, Linked Representation of Queues, Circular Queues, Dequeue, Priority Queues	
5.	Trees in Data Structures: Trees: Basic terminology. Binary Tree: Properties of a Binary Tree, ADT Binary trees and its representations. Operations: Insert, Delete & Traversal: Preorder, In order, Post order, Binary Search Trees: Searching and Inserting in Binary Search Trees, Deleting	07
	in a Binary Search Tree, Balanced Binary Trees, AVL Search Trees: Insertion in an AVL Search Tree, Deletion in an AVL Search Tree.	
6.	Graphs Theory in Data Structures: Graphs: Introduction to graphs, Graph Theory Terminology, Sequential Representation of Graphs, Adjacency Matrix; Path Matrix, Linked Representation of a Graph, Operations on Graphs, Traversing a Graph, BFS and DFS, Spanning Trees, Minimum Spanning Trees Kruskal's and Prim's algorithm, Dijkstra's algorithm.	07
	TOTAL	42

List of Experiments:

Perform any 08 experiment out of 10:

- 1. Write a C program to implement a linear search and Binary Search for a given array.
- 2. Write a C program to arrange the list of students according to roll numbers in ascending order using 1) Bubble Sort 2) Insertion sort
- 3. Write a C program to implement a sparse matrix with operations like initialize empty sparse matrix, insert an element, sort a sparse matrix on row-column, transpose a matrix, etc.
- 4. Write a C program to develop a hash table to implement hashing. (Content Beyond Syllabus)
- 5. Write a C program to write functions to 1) Add and delete the nodes in a linked list. 2) Compute total number of nodes in the linked list 3) Display list in reverse order using recursion.
- 6. Write a C program to implement stack using a linked list and perform evaluation of a postfix expression using stack.
- 7. Write a C program to implement queue operations.
- 8. Write a C program to implement tower of hanoi using recursion.
- 9. Write a C program to implement tree traversal.
- 10. Write a C program to implement graph traversal.
- 11. Perform at least one practical using virtual lab (VLab). (Compulsory)

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Text Books:

- 1. Seymour Lipschutz, "Schaum's Outline of Data Structures", McGraw-Hill Companies Incorporated.
- 2. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Addison-Wesley, 1983.
- 3. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", University Press, Second Edition, 2008.

Reference Books:

- 1. Alfred V. Aho, Jeffrey D. Ullman, "Data Structures & Algorithms", 1st Edition, Pearson.
- 2. Michael T. Goodrich, Roberto Tamassia, David M. Mount, "Data Structures and Algorithms in Java", 5th Edition, Wiley, 2010.

E-Resources:

NPTEL Course:

- 1. https://nptel.ac.in/courses/106/102/106102064/
- 2. http://cse01-iiith.vlabs.ac.in/
- 3. https://ds2-iiith.vlabs.ac.in/data-structures-2/

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	m: B. Tech. (Ele	ectronics and	l Compute:	r Engine	ering)		Seme	ster: III	
Course	: Computer Org	anization an	d Architec	ture			Code	ECPC3	04
	Teaching Schen	ne (Hrs/wee	k)		Eva	luation So	cheme (N	(Iarks)	
Lectur	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
03	-	-	03	40	60	-	-	-	100
	uisites: Basics o	of computer s	systems						
	e Objectives:								
	Understand cor	-		•	s, interco	nnections,	buses,	and ap	ply binary
	arithmetic on sig Understand CPU		· ·		and CISC	' architecti	irac		
	Analyze hardwii	=	_				1168.		
	Design memory		_						
	Analyze pipelini	•	_		-		hazards.		
	Explain I/O tran	•							
Course	Outcomes: Aft	er completion	on of this c	ourse, sti	ıdents wil	l able to -			
CO1	Understand the	structure, fu	ınction, an	d charac	teristics of	computer	systems	•	
CO2	Describe the fu	nction of the	e Central P	rocessin	g Unit and	RISC and	l CISC A	rchitectu	ire.
CO3	Explore the kn	owledge abo	ut Control	Unit De	sign.				
CO4	Analyze trade-	offs and perf	formance is	ssues.					
CO5	Apply a pipeling	ne for consist	tent execut	tion of in	structions	•			
CO6	Discuss the wo	rking mecha	nisms of v	arious I/	O periphe	rals			
Course	Contents:								
Unit			Des	scription	1				Duration (Hrs.)
	Computer Eve								
	Organization &								
1.	Integer Represe		-	_		14111	D	41. 2	07
	Integer Arithmy Algorithm, Div		-			-		ootn's	
	Algorium, Div	ISIOII KESIOI	ing Aigon	, 1101	II-Kestoriii	ig algorium			
	Processor Des	O		. –		_	-		
	CPU Architect	_	_				-		
2	Types of ope					_			07
2.	translation. Ins	<u> </u>							07
	Comparison of Neumann Arch		oc Flocess	ous. Con	nparison D	etween H	ai vaiu äll	u voii	
	Case study of I		on Neumai	nn Archi	tecture.				

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

3.	Control Unit: Fundamental Concepts: Single Bus CPU organization, register transfers, performing an arithmetic/logic operation, fetching a word from memory, storing a word in memory, Execution of a complete instruction. Micro-operations, Types of Control Unit, Hardwired Control, Micro-programmed Control: Microinstructions.	07
4.	Memory Organization: Need, Hierarchical memory system, Characteristics, Size, Access time, Read Cycle time and address space. Main Memory Organization: ROM, RAM, EPROM, E2PROM, DRAM, Cache memory Organization, Cache Mapping techniques: Direct, Set Associative, Fully Associative.	07
5.	Pipelining: Data hazards: operand forwarding, handling data hazards in software, side effects. Instruction hazards: unconditional branches, conditional branches, and branch prediction. Performance considerations: effect of instruction hazards, number of pipeline stages.	07
6.	I/O Organization: Input/output systems, I/O Transfer Techniques: Program-controlled, Interrupt-Driven, DMA controlled synchronous, asynchronous, working mechanisms of peripherals: keyboard, video displays, touch screen panel, printers	07
	TOTAL	42

Text Books:

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", 7th Edition, Pearson Prentice Hall Publication.
- 2. C. Hamacher, V. Zvonko, S. Zaky, "Computer Organization", 5th Edition, Tata McGraw Hill Publication.
- 3. Kai Hwang, "Advanced Computer Architecture", Tata McGraw-Hill.

Reference Books:

- 1. Hwang and Briggs, "Computer Architecture and Parallel Processing", Tata McGraw Hill Publication.
- 2. A. Tanenbaum, "Structured Computer Organization", Prentice Hall Publication, 4th Edition.

E-Resources:

- 1. www.nptelvideos.in
- 2. www.geeksforgeeks.org
- 3. www.udemy.com

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	m: B. Tech. (El	ectronics and	l Computer l	Engineer	ing)		Semest	ter: III		
Course	Engineering M	Sathematics -	- III				Code:	ECMD:	301	
	Teaching Sche	eme (Hrs/we	ek)		Eval	uation S	cheme (N	Iarks)		
Lectur	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	-	-	03	40	60	-	-	-	100	
	quisites:									
First or	der and first deg	ree different	ial equations	s, calculu	s and vect	or differ	entiation.			
	Objectives:									
	To familiarize st		•	different	ial equation	ons, trans	forms, sta	tistics, _]	probability,	
	and vector calcu	•								
	To equip stude			techniqu	es to enh	nance an	alytical th	ninking	and solve	
	discipline-speci			. 1		11 .				
	Outcomes: Aft									
CO1	Solve higher-o	rder differen	tial equation	is and mo	del electr	ical circu	iits.			
CO2	Analyze data u	ising statistic	al and proba	bility co	ncepts.					
CO3	Apply Z-transf	form concept	s in digital s	ignal pro	cessing.					
CO4	Understand Laplace transform and use it in applications.									
CO5	Evaluate Fourier transforms and apply in signal processing.									
CO6	Apply vector is	ntegral calcu	lus in electro	omagneti	c field pro	blems.				
Course	Contents:									
Unit			Desc	ription					Duration (Hrs.)	
	Linear Differe	ential Equat	ions:							
1.	Linear Differential Equations (LDE) of nth order with constant coefficients,									
1.	Method of variation of parameters, Cauchy's and Legendre's D.E., Simultaneous									
	DE and applications of differential equations to electric circuits.									
	Statistics and	•				_				
	Measures of co			es of disp	persion, M	Ioments,	Skewness	s and		
2.	Kurtosis, Corre		_	u. D	1 1 111	S	n'		07	
		finition and theorems on Probability, Probability Distributions: Binomial								
	distribution Poisson distribution, Normal distribution, Test of Hypothesis: Chi-									
	Square test. Z- Transform									
3.			7 transform	7 tra	neform o	f Standa	rd Sague	nces	07	
J.	Definition, Properties of Z-transform, Z- transform of Standard Sequences. Inverse, Z-transform, Solution of difference equation by Z-transform.								07	
	Laplace Transform:								0.7	
4.	Definition and properties of Laplace transform, Inverse Laplace transform,								07	

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	Applications of Laplace transform to solve differential equation.					
	Fourier Transforms:					
5.	Fourier Transform (FT): Complex Exponential Form of Fourier Series, Fourier	07				
	Transform, Inverse Fourier Transform, Fourier Sine transform, Fourier Cosine	07				
	transform, Inverse Fourier Sine Transform, Inverse Fourier Cosine Transform.					
	Vector Integral Calculus & Applications:					
6	Line integral, Work done, Green's Lemma, Gauss's Divergence Theorem,	07				
6.	Stroke's theorem. Applications of vector integral calculus in Electro-magnetic	ector integral calculus in Electro-magnetic 07				
	field.					
	TOTAL	42				

Text Books:

- 1. B.S. Grewal, "Higher Engineering Mathematics", 40th Edition, Khanna Publishers, Delhi, 2008.
- 2. P. N. Wartikar, J.N. Wartikar, "Applied Mathematics, Volumes I and II", Pune Vidyarthi Griha Prakashan, Pune.
- 3. H.K. Das, "Higher Engineering Mathematics", S. Chand Publication.

Reference Books:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley Publications, 2015.
- 2. Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", 5th Edition, Elsevier Academic Press.
- 3. B.V. Raman, "Engineering Mathematics", Tata McGraw-Hill.
- 4. C.R. Wylie, L.C. Barrett, "Advanced Engineering Mathematics", McGraw-Hill, Inc.
- 5. Thomas L. Harman, James Dabney, Norman Richert, "Advanced Engineering Mathematics with MATLAB", 2nd Edition, Brooks/Cole, Thomson Learning.
- 6. Joel Hass, Christopher Heil, "Calculus", 11th Edition, Pearson, 2016. (Assumed based on partial information—please confirm if it's "Calculus, 11th Edition").

E-Resources:

- 1. NPTEL Course "Transform Calculus and its Applications in Differential Equations" https://nptel.ac.in/courses/111/105/111105123/
- 2. NPTEL Course "Probability Theory and Applications" https://nptel.ac.in/courses/111/104/111104079/

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program:	B. Tech. (Ele	ctronics and	Computer 1	Engineer	ing)	;	Semester:	III		
Course: P	Project Manage	ement System	n – I				Code: ECN	AC301		
Te	eaching Scher	ne (Hrs/we	ek)		Eva	luation S	Scheme (M	arks)		
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
-	02	-	01	-	-	25	-	-	25	
Prerequis	sites:			1			1			
Interactive	e mind-set for	practical.								
Course O	bjectives:									
1. To	acquire basic	knowledge	of Problem-	solving t	echnique	s.				
2. To	understand th	e structured	way of solv	ing prob	lems with	n the right	t tools.			
Course O	utcomes: Afte	r completio	n of this cou	ırse, stud	ents will	be able to) -			
CO1	Know the pro	ject and its i	mportance.							
CO2	Understand th	e structured	way of proj	ect exect	ution prod	cess.				
CO3	Understand or									
CO4	Know the key									
Course C	ontents:	1 1								
									Duration	
Unit	Description								(Hrs.)	
	Project & Management System: What is a project, What is Project Management,								06	
1.	Types, Importance and its benefits.									
	Project Mana								0.5	
2.	Planning, Execution, Monitoring & Control, Deliverables, Stakeholders.								06	

Text Books:

3.

- 1. K. Nagarajan, "Project Management", New Age International Publishers.
- 2. Joseph Heagney, "Fundamentals of Project Management", AMACOM.

Principles: 12 Principles of Project Management.

3. Harold Kerzner, "Project Management: A Systems Approach to Planning, Scheduling, and Controlling", Wiley.

Reference Books:

- 1. "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", Project Management Institute.
- 2. BB Goel, "Project Management: Principles and Techniques", Deep & Deep Publications Pvt. Ltd.

E-Resources:

- 1. Dr. Nimisha Singh, "Introduction to Project Management: Principles & Practices", NPTEL Course https://onlinecourses.swayam2.ac.in/imb25_mg167/preview
- 2. Prof. Raghu Nandan Sengupta, "Project Management", NPTEL Course https://onlinecourses.nptel.ac.in/noc25_mg78/preview

16

28

TOTAL

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

O	m: B. Tech. (Ele	ctronics and	Computer 1	Engineer	ring)		Sem	nester: II	I	
Course	: Problem Solvin	g Techniqu	es – I				Cod	le: ECVS	304	
	Teaching Scher	ne (Hrs/we	ek)		Eva	luation S	Scheme (I	Marks)		
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
-	02	-	01	-	-	25	-	-	25	
Prerequ	uisites:									
Interact	ive mind-set for	practical.								
Course	Objectives:									
1. '	To acquire basic	knowledge	of Problem-	solving t	echnique	s.				
2. '	To understand th	e structured	way of solv	ing prob	lems with	the righ	t tools.			
Course	Outcomes: After	er completio	n of this cou	ırse, stuc	lents will	be able to) -			
CO1	Know the proble	em and type	s of problen	1.						
CO2	Understand the structured way of solving a problem.									
CO3	Understand the	basic tools a	nd its applic	cation.						
CO4	Apply the learni	ng to solve	simple prob	lem case	s as a tea	m.				
Course	Contents:									
Unit	Daniel die									
Omt	Description								(Hrs.)	
1.	Problem Understanding: Define problem, Types of Problem, What is problem									
1.	solving? Structured way of Problem solving – Step by Step.									
2.	Problem Solvin	ng Approac	h: Structure	d step by	y step wo	rking mo	del, Princ	iples to	06	
۷.	think and apply.								UO	
	Basic Tools for Problem Solving:									
3.	Knowing the tools and applying the right tools at the right step of problem solving,								16	
	Problem solving	g case study.								
							T	OTAL	28	

- 1. M.T. Somashekara, "Problem Solving and Programming Concepts", PHI Learning.
- 2. Dheeraj Sharma, "Problem Solving and Decision Making", McGraw-Hill Education.

Reference Books:

- 1. Willian Henderson, "Master Critical Thinking, Creative, Logic & Problem solving skills", Peak Publish LLC.
- 2. Sharma Narender, "Handbook 7 QC tools", Shakehand with Life.

E-Resources:

- 1. Coursera: "Creative Problem Solving" https://www.coursera.org/learn/creative-problem-solving.
- 2. MindTools "Problem Solving Techniques", https://www.mindtools.com/cx4ems0/problem-solving.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering)	Semester: III
Course: Project Based Learning	Code: ECCE301

Te	eaching Sche	me (Hrs/wee	ek)	Evaluation Scheme (Marks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25

Prerequisites:

Basic idea of report writing, fundamental knowledge of electronics and software languages is required

Course Objectives:

- 1. To highlight long-term, multidisciplinary, and student-centered project-based learning activities.
- 2. To foster both individual and group learning by using the tools at hand to solve real-world problems.
- 3. To be able to create applications based on the principles of telecommunication and electronics engineering, sometimes using previously learned material.
- 4. To gain hands-on experience in all phases of the electrical system development life cycle, including design, implementation, testing, and specification.
- 5. To be able to develop and assess the suggested system using the right hardware and software tools.
- 6. To provide each student the chance to participate, either alone or in a group, in orders to foster professionalism and teamwork.

Course Outcomes: After completion of this course, students will able to -

Course	Course, Arter completion of this course, students will able to
	Recognize a significant real-world issue, potentially involving multiple disciplines, by
CO1	conducting a comprehensive literature review, and design appropriate aims and objectives to
	guide the project.
CO2	Use of ethical practices and safety standards consistently while implementing a solution that
COZ	offers meaningful societal benefits.
CO3	Develop an innovative solution rooted in electronics and telecommunication engineering by
COS	guide the project. Use of ethical practices and safety standards consistently while implementing a solution that offers meaningful societal benefits. Develop an innovative solution rooted in electronics and telecommunication engineering be combining foundational concepts with existing knowledge and practical experience. Implement appropriate technologies in the project and present your understanding and learning through both verbal explanations and written reports. Develop both independent working skills and effective teamwork capabilities to contribute meaningfully in various collaborative settings. Differentiate between individual and group roles by examining responsibilities in collaborative.
CO4	Implement appropriate technologies in the project and present your understanding and learning
CO4	guide the project. Use of ethical practices and safety standards consistently while implementing a solution that offers meaningful societal benefits. Develop an innovative solution rooted in electronics and telecommunication engineering by combining foundational concepts with existing knowledge and practical experience. Implement appropriate technologies in the project and present your understanding and learning through both verbal explanations and written reports. Develop both independent working skills and effective teamwork capabilities to contribute meaningfully in various collaborative settings. Differentiate between individual and group roles by examining responsibilities in collaborative
COF	Develop both independent working skills and effective teamwork capabilities to contribute
Develop both independent working skills and effective teamwork capabilities to contrib	
COG	Differentiate between individual and group roles by examining responsibilities in collaborative
CO6	tasks, and organize personal contributions to enhance overall team performance.

Group Structure:

Working in supervisor/mentor –monitored groups. The students plan, manage and complete a task/project/activity which addresses the stated problem.

1. Create groups of 5 (five) to 6 (six) students in each class.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Project Selection:

Analyse the problem, design, and determine the values of the components. Survey through journals, patents, or field visits (a problem can be theoretical, practical, social, technical, symbolic, cultural, and/or scientific). There are no widely accepted standards for what makes a project acceptable. Projects differ substantially in terms of the activity's substance and structure, the clarity of the learning objectives, and the depth of the questions examined. It is advised to use the problem-based, project-oriented learning methodology. The concept starts with the identification of an issue, which frequently develops from a query or "wondering." The learning process then begins with this problem formulation.

A dilemma arises from students' curiosity in various academic fields and professional settings and might be theoretical, practical, social, technical, symbolic, cultural, and/or scientific. The project topic may be interdisciplinary in view, as indicated in the preamble, since electronics serves as a crucial foundation for other fields (computer science, signal processing, and communications). Although, the selected challenge needs to use the principles of electronics and telecommunication engineering. Electronic components must make up at least 40% of the project's overall established system setup. However, in an actual instance, a project topic that is entirely software-based might be permitted.

Effective Documentation:

Effective writing skills must be taught to students in order for our engineering graduates to be able to provide documentation that works. The literature review, problem statement, aim and objectives, system block diagram, system implementation details, discussion and analysis of the results, conclusion, system limitations, and future scope are all intended to be included in the DSP final report. The creation of the DSP synopsis and final report is anticipated to involve the usage of numerous publicly accessible software tools, such as Medley (Elsevier) and Grammerly. It is anticipated that DSP mentors and guides will instruct students on how to use reliable sources of knowledge on their DSP topic, including books, magazines, and reference papers.

Evaluation & Continuous Assessment:

The organization, leader, or mentor is dedicated to analysing and evaluating program efficacy as well as student success. Course progress is routinely tracked every week. The work needs to be reviewed once a week. Individual and team performance must be measured throughout the monitoring, ongoing assessment, and evaluation process. Authorities and supervisors/mentors oversee the course content and do ongoing evaluations. Students are required to uphold an institutional culture that values genuine teamwork, self-motivation, think, learn and share peer learning processes, and individual accountability. Through guidance and orientation programs, as well as the provision of suitable resources and services, the department or institution should assist students in this respect. Students and their supervisors/mentors must actively engage in the assessment and evaluation procedures. It is advised that all activities be routinely and legally documented.

Recommended parameters for assessment, evaluation and weightage:

- 1. Idea Inception (kind of survey). (10%)
- 2. Outcome (Participation/ publication, copyright, patent, product in market). (50%)
- 3. Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents). (15%)

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

- 4. Attended reviews, poster presentation and model exhibition. (10%)
- 5. Demonstration (Poster Presentation, Model Exhibition etc.) (10%).
- 6. Awareness / Consideration of Environment/ Social / Ethics/ Safety measures/Legal aspects. (5%)

Reference Books and Research Articles:

- 1. John Larmer, John R. Mergendoller, and Suzie Boss, "Setting the Standard for Project Based Learning".
- 2. John Larmer and Suzie Boss, "Project Based Teaching: How to Create Rigorous and Engaging Learning Experiences".
- 3. Erin M. Murphy and Ross Cooper, "Hacking Project Based Learning: 10 Easy Steps to PBL and Inquiry".
- 4. M. Krašna, "Project based learning (PBL) in the teachers' education," 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, 2016, pp. 852-856, doi: 10.1109/MIPRO.2016.7522258.
- 5. J. Macias- Guarasa, J.M. Montero, R. San-Segundo, A. Araujo and O. Nieto-Taladriz, "A project based learning approach to design electronic systems curricula", IEEE transactions on Education, vol.49, no. 3, pp. 389-397, Aug. 2006, doi: 10.1109/TE.2006.879784.

E-Resources:

- Project-Based Learning, Edutopia, March 14, 2016. https://www.edutopia.org/project-based-learning
- 2. www.howstuffworks.com.
- 3. Condliffe, Barbara. "Project-Based Learning: A Literature Review. Working Paper." MDRC (2017). https://eric.ed.gov/?id=ED578933
- 4. Activity-Based Learning. https://genevaglobal.com/wp-content/uploads/2021/10/Activity-Based-Learning.GenevaGlobal.2021-07.pdf

NPTEL Resources:

1. Problem Based Learning by Dr. Indrajit Saha, National Institute of Technical Teachers Training and Research, Kolkata.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program	B. Tech. (Ele	ectronics and	Computer	r Enginee	ring)		Seme	ster: III	
Course:	Course: Electronics Workshop Code: ECVS304								
T	eaching Scher	ne (Hrs/wee	k)		Eva	luation	Scheme (N	(Jarks)	
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	02	-	-	25	-	-	25
Prerequi	sites: Basics I	Electronics ar	nd Electric	al Engine	ering				
Course (Objectives:								
1. Fa	ımiliarize stud	ents with ele	ctronic sin	nulator too	ols.				
2. E	nable practical	understandi	ng of error	analysis,	bridge ci	ircuits, ar	nd wavefor	m measu	rements.
3. In	troduce sensor	rs and transd	ucers used	in automa	ation sys	tems.			
Course (Outcomes: Aft	ter completio	n of this co	ourse, stu	dents wil	l able to	_		
CO1	Apply basic M	ATLAB con	nmands for	matrix o	perations	and plot	ting.		
CO2	mplement fun	damental ele	ctronic cir	cuit comp	onents u	sing Mul	tisim.		
CO3	Understand mi	crocontrolle	architectu	re and ba	sic progr	amming.			
CO4	Create and edit	t PCB layout	S.						
CO5	Develop and m	nodify PCBs.							
Course (Contents:								

List of Experiments:

Perform any 02 experiment from each group.:

Group A:

- 1. Introduction to Matlab
- 2. Operations on Matrix using Matlab
- 3. Generation of sine, square, triangular, and sawtooth waveforms using Matlab
- 4. Time Domain Convolution of two signals using Matlab

Group B:

- 5. Introduction to Multisim
- 6. RC, RL, RLC Transient Analysis using Multisim
- 7. Common Emitter AMPLIFIER design using Multisim
- 8. Op amp applications using Multisim

Group C:

- 9. Introduction to Proteus
- 10. Basic Microcontroller Applications such as LED blinking
- 11. Sensor Interfacing

Group D:

- 12. Introduction to PCB software
- 13. Schematic and PCB layout Design
- 14. To study PCB Etching Process

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Text Books:

- 1. H. Moore, "MATLAB for Engineers", Pearson, 2018.
- 2. H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 2010.
- 3. D. Báez-López and F. Guerrero-Castro, "Circuit Analysis with Multisim", Wiley, 2016.
- 4. C. Schroeder, "PCB Design for Real-World Design Engineers", Springer International Publishing AG, 2011.

Reference Books:

- 1. R. L. Boylestad, "Introductory Circuit Analysis", Pearson, 2016.
- 2. S. R. Gundala, "Microcontroller Programming and Interfacing Using Proteus", Laxmi Publications, 2019.
- 3. B. R. Hunt, R. Lipsman, and J. M. Rosenberg, "A Guide to MATLAB", 6th ed., Cambridge University Press, 2014...

E-Resources:

- 1. Multisim Download NI
- 2. PCB Tutorial Videos Learn how to use Proteus EDA Tools
- 3. MATLAB Onramp (Free introductory course) https://matlabacademy.mathworks.com/

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: E	B. Tech. (Ele	ctronics and	l Compute	r Enginee	ring)	5	Semester	: III		
Course: Internship – II Code: ECIN302										
Teac	Teaching Scheme (Hrs/week)					Evaluation Scheme (Marks)				
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
-	-	-	02	25 25						

Preamble:

Internships serve as vital educational and career development experiences, offering practical exposure in a specific field. Employers seek individuals who possess the necessary skills and an understanding of industry environments, practices, and cultures. This internship is designed as a structured, short-term, supervised training program, often centered on specific tasks or projects with clear timelines. The primary goal is to immerse technical students in an industrial setting, providing experiences that cannot be replicated in the classroom. This exposure aims to develop competent professionals who understand the social, economic, and administrative factors influencing the operations of industrial organizations.

Course Objectives:

- 1. Exposure to students to the industrial environment, which cannot be provided in the classroom and hence creating deployable professionals for the industry.
- 2. Learn to implement the technical knowledge in real industrial situations.

Course Outcomes: After completion of this course, students will be able to -								
CO1	Gain exposure to industry practices and understand how academic concepts are applied in							
COI	professional settings.							
CO2	Develop and demonstrate effective communication and teamwork skills within a work							
	environment.							
CO3	Improve your problem-solving and time management skills by working in real-world industry							
COS	settings.							

Internship Requirements

- 1. **Internship Duration:** It is mandatory for all students to undergo an internship after every semester during vacations for the duration of 4 weeks. Internships completed during this period will be considered for the assessment of Term Work (TW).
- 2. Internship Opportunities: Students can explore various opportunities for internships at:
 - a. Industries
 - b. Research labs or organizations
 - c. Collegiate clubs
 - d. In-house research projects
 - e. Online internships
- 3. **Support and Assistance:** Students can seek assistance for securing internships from:
 - a. The Training and Placement cell, along with departmental coordinators
 - b. Department or institute faculty members
 - c. Personal contacts
 - d. Directly connecting with industries or organizations

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

- 4. **Request Letter:** Once an industry, research organization, or collegiate club is identified, students must obtain a request letter from the concerned department or placement office. This letter, in the standard format must be duly signed by the authority, should be addressed to the HR manager or relevant authority.
- 5. **Confirmation Letter:** Students must submit the confirmation letter from the industry, research organization, or collegiate club to the Internship Coordinator and the Head of Department (HOD) office.
- 6. **Joining Report:** Upon commencing the internship, students must submit the joining report, joining letter, or a copy of the confirmation email to the Internship Coordinator and the HOD office.
- 7. **Faculty Mentor:** A faculty member will be assigned as a mentor to a group of students. The mentor will be responsible for monitoring, evaluating, and assessing student internship activities. The faculty mentor is also required to visit the internship location and submit formal feedback to the Internship Coordinator.
- 8. **Faculty Visits:** Faculty members are advised to visit the internship site once or twice during the internship period to monitor progress.
- 9. **Progress Report:** Students must submit progress report fortnightly to their faculty guide and the final internship report to the Internship Coordinator and department office.
- 10. **Evaluation Report:** After the completion of the internship, the mentor, along with the assessment panel members, should submit the evaluation report of the students to the department office and the Internship Coordinator.
- 11. **Internship Certificate:** Students must receive the Internship Certificate from the industry and submit it to the Internship Coordinator and department office.
- 12. **Presentation and Assessment:** Students are required to give a presentation on their internship work as part of the term work. The internship diary and report will also be verified and assessed.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

SYLLABUS SEMESTER - IV

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Prograi	n: B. Tech. (Ele	ectronics and	Computer	r Engine	ering)		Seme	ster: IV		
Course:	Database Man	agement					Code	: ECPC40)5	
1	Teaching Scher	ne (Hrs/wee	k)		Eva	aluation	Scheme (N	Marks)		
Lecture	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	02	-	04	40	60	-	25	-	125	
Prerequ										
	owledge of dat	a structures,	computer j	program	ming and	digital lo	gic			
	Objectives:									
	Γο introduce the			•						
	Γο explore datal	=	_				technique	S.		
	Γο develop skill				_			1		
	Γο understand d		_	_				=	=	
	Γο integrate ele nanage real-tim	_	_	ata (fike	sensor da	ata, embe	aded logs) into data	abases and	
	Outcomes: Aft			ource sti	idents wil	ll able to	_			
		•								
CO1	Understand bas						is.			
CO2	Design an ER	model and co	onvert it in	to relatio	nal schen	na.				
CO3	Apply SQL for	data definit	ion, manip	ulation,	and query	ing.				
CO4	Apply database	e schemas to	eliminate	redundar	ncy.					
CO5	Understand tra	nsaction mar	nagement,	concurre	ncy contr	ol, and re	covery tec	chniques.		
CO6	Design and im	plement appl	ications re	lated to	electronic	s data pro	ocessing.			
Course	Contents:									
Unit			De	escriptio	n				Duration (Hrs.)	
	Introduction to Databases and Data Models:									
4	Characteristics					file syste	ms, Databa	ase users	07	
1.	and DBMS are	chitecture, D	ata model	s: Hierar	chical, N	etwork, I	Relational,	Object-	07	
	oriented, Applications of DBMS.									
	Entity-Relation	nship (ER)	, Enhance	d ER M	odel:					
	ER model co	ncepts: Enti	ties, attrib	outes, rel	lationship	s, ER di	iagrams a	nd their		
2.	symbols, Gene		_		_				07	
	Model, Extended E-R Features, Converting ER and EER diagram into tables									
	Case study: Da				nitoring s	system				
	Relational Model and Relational Algebra:									
_	Structure of relational databases, Keys: Primary, Foreign, Candidate, Super key,								0.7	
3.	Integrity constraints, Relational Algebra: Select, Project, Join, Union, Set difference, Cartesian product, Division, Use cases in electronics: Data logs from						07			
	-		sion, Use	cases	in elec	tronics:	Data log	gs from		
	microcontrolle	rs								

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	Structured Query Language (SQL):	
4.	SQL: Characteristics and Advantages, DDL, DML, DCL, TCL commands, SQL	
	Operators, Basic SQL queries: SELECT, WHERE, ORDER BY, GROUP BY,	
	HAVING, Joins: Inner, Left, Right, Full. Subqueries, Views, Indexes, Stored	07
	Procedures (basic), PL/SQL: Concept of Stored Procedures and Functions, Cursors,	
	Triggers, Assertions, Roles and Privileges.	
	Case Study: Creating a database for sensor data management	
	Database Design and Normalization:	
5.	Functional Dependencies, Normal Forms: 1NF, 2NF, 3NF, BCNF, Lossless	07
<i>J</i> .	decomposition, Dependency preservation, Case study: Designing normalized	07
	database for electronic inventory system	
6.	Transactions, Concurrency and Recovery:	
	Concept of transaction and ACID properties, Serializability and Schedules,	
	Concurrency control techniques: Lock-based, Timestamp-based, Recovery: Log-	07
	based, Checkpointing, Shadow paging, Introduction to distributed databases and	
	NoSQL (MongoDB basics)	
	TOTAL	42

Text Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw Hill.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson.

Reference Books:

- 1. Ivan Bayross, "SQL, PL/SQL: The Programming Language of Oracle", BPB Publications.
- 2. Jeffrey A. Hoffer, "Modern Database Management", Pearson.
- 3. Pramod J. Sadalage, Martin Fowler, "NoSQL Distilled", Addison-Wesley.

E-Resources:

- 1. NPTEL Course "Database Management System: https://nptel.ac.in/courses/106105175 2.
- 2. NPTEL Course "Database Management System https://nptel.ac.in/courses/106104135

List of Experiments:

Group A- Database Programming Languages – SQL

- 1. Design and develop SQL DDL statements which demonstrate the use of SQL objects such as Table, View, Index, Sequence and Synonym
- 2. Design and develop SQL queries for suitable database application using SQL DML statements: Insert, Select, Update and Delete with operators and functions
- 3. Design and develop at least 5 SQL queries for suitable database application using SQL DML statements: all types of Join and Sub-Query

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Group B - Group B- Database Programming Languages – PL / SQL

 Write a Stored Procedure namely calculate_fine for the following requirements:-Schema:

Borrower (Roll no., Name, Date of Issue, Name of Book, Status) Fine (Roll no, Date, Amt.)

- a. Accept roll no. & name of book from user.
- b. Check the number of days (from date of issue), if days are between 15 and 30, then fine amount will be Rs 5 per day.
- c. If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.
- d. After submitting the book, status will change from I to R.
- e. If condition of fine is true, then details will be stored into fine table. Write a PL/SQL block for using procedure created with above requirement.
- 2. Write a PL/SQL block of code using parameterized Cursor that will merge the data available in the newly created table N_RollCall with the data available in the table O_RollCall. If the data in the first table already exist in the second table then that data should be skipped.
- 3. Database Trigger: Write a database trigger on Library table. The System should keep track of the records that are being updated or deleted. The old value of updated or deleted records should be added in Library_Audit table.

Group C- Database Programming Languages – No SQL

- 1. Mongo DB queries: Design and Develop Mango DB Queries using CRUD operations.(use CRUD operations, SAVE Method and logical operators)
- 2. Mango DB Aggregation and Indexing: Design and Develop Mango DB Queries using Aggregation and Indexing with suitable example.
- 3. Mango DB Map reduces operations: Implement Map reduces operation with suitable example using Mango DB

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	ram: B. Tech. (Electronics and Computer Engineering) Semester: IV				IV					
Course	Course: Communication Systems Code: ECPC406				PC406					
	Teaching Scheme (Hrs/week) Evaluation Scheme (Mark						Marks)			
Lectur	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	02	-	04	40	60	-	25	-	125	
Prereq										
	nic Devices and	Circuits, Tin	ne domain an	d frequen	cy doma	in analys	sis			
	Objectives:									
	To provide foun		_	Ū	•		-	•	•	
	To explore mod		iques, noise a	ınalysis, a	ind systei	m design	elements	in both	analog and	
	digital domains. To dayslan an		ing of bosol	and tran	amiaaiar	. signal	roprocon	totion	and nulsa	
	To develop an modulation for a		-	Janu ual	19111188101	i, sigilal	represen	itation,	and puise	
				rse stude	nts will a	hle to -				
CO1	e Outcomes: After completion of this course, students will able to -									
	Explain communication elements, spectrum, noise types, and perform calculations.									
CO2	Analyze AM principles, design modulators/demodulators, explain transmitter architectures.							ctures.		
CO3	Explain FM/PM theory, analyze bandwidth, design modulators/demodulators.									
CO4	Apply sampling theory, distinguish types, explain PAM, PWM, PPM, TDM, FDM.									
CO5	Explain quantization, PCM, delta modulation, evaluate digital schemes.									
CO6	Analyze baseb	and signaling	g, interpret ey	e diagran	ns, under	stand ISI	reduction	n technio	ques.	
Course	Contents:							1		
Unit	Description						Duration (Hrs.)			
	Introduction t		-							
	Introduction to Analog Communication System. The Electromagnetic & Optical Spectrum and its usage; Radio spectrum and frequency allocation. Elements of									
1.	=	_	-						07	
1.	communication	•			• •					
	Internal Noise temperature	, indise calci	mations, sign	ai to nois	e rano, i	noise rig	ure, and i	ioise		
		1 1 4	1D 11	4.0						
	Amplitude Mo				Modul	ation Ind	lav fracu	ency.		
	spectrum & BV	-	-	-			-	-	07	
2.	level AM mo					_				
	sideband (VS)									
	DSBFC, SSB s	*							1	

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	Angle Modulation:	
	Basic concept, mathematical analysis, frequency spectrum of FM wave,	
	sensitivity, phase deviation and modulation index, frequency deviation and percent	
3.	modulated waves, bandwidth requirement, deviation ratio, Narrow Band FM, and	07
	Wide Band FM. Varactor diode modulator, FET reactance modulator, stabilized	
	reactance modulator- AFC, Direct FM transmitter, indirect FM Transmitter, pre-	
	emphasis and de-emphasis. Amplitude limiting, FM demodulators	
	Pulse Analog Modulation:	
	Need of analog to digital conversion, sampling theorem for low pass signal in time	
4.	domain, and Nyquist criteria, Types of sampling- natural and flat top.	07
	Sampling techniques, aliasing error, and aperture effect. PAM, PWM, PPM	
	generation and detection. TDM and FDM	
	Digital Representation of Analog Signals:	
	Quantization of Signals: Quantization error, Uniform & Non-Uniform types of	
5.	Quantization, Mid-rise &Mid-tread Quantizer, Companding: A-law & μ-law.	07
	Pulse Code Modulation system: Generation & Reconstruction, Differential Pulse	
	code modulation, Delta Modulation, Adaptive Delta Modulation.	
	Baseband transmission & reception:	
6.	Line codes: Unipolar, Bipolar, NRZ, RZ, RZ-AMI, Manchester Baseband Pulse	07
	Shaping, M-ray Signaling, ISI, eye diagram, scrambler, Unscramble	
	TOTAL	42

List of Experiments:

Minimum 10 Experiments should be performed:

- 1. Experiment on practical implementation of Amplitude Modulation
- 2. Frequency modulator & demodulator using Varicap/Varactor Diode and NE 566 VCO, IC565 (PLL based detection), calculation of modulation index & BW of FM.
- 3. Experiment on practical implementation of Amplitude Demodulation
- 4. Experiment on practical implementation of Sampling and reconstruction and also observe aliasing effect by varying sampling frequency.
- 5. Experiment on practical implementation of PAM system.
- 6. Experiment on practical implementation of PWM system.
- 7. Experiment on practical implementation of Pre-emphasis and De-emphasis
- 8. Study of PCM
- 9. Study of Companded PCM
- 10. Study of DM: Generation and detection
- 11. Study of ADM: Generation and detection
- 12. Study of line codes (NRZ, RZ, POLAR RZ, BIPOLAR (AMI), MANCHESTER) & their spectral analysis.
- 13. Verify Sampling Theorem using simulation
- 14. Simulation program to calculate Signal to noise ratio for PCM system & DM system.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

15. Simulation of AM modulation and demodulation using MATLAB

Note: Visit to AIR station/telephone exchange is compulsory. Students are supposed to attach report of visit to journal

Text Books:

- 1. George Kennedy, "Electronic Communications", McGraw Hill.
- 2. Wayne Tomasi, "Electronics Communication Systems: Fundamentals through Advanced", 5th Edition, Pearson Education.
- 3. J.S. Chitode, "Analog and Digital Communication", Technical Publications, 2009.
- 4. B.P. Lathi, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press.

Reference Books:

- 1. Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons.
- 2. Taub, Schilling, "Principles of Communication Systems", Tata McGraw-Hill.
- 3. R.P. Singh, S.D. Sapre, "Communication Systems Analog & Digital", 2nd Edition, Tata McGraw-Hill.
- 4. Bernard Sklar, Prabitra Kumar Ray, "Digital Communications: Fundamentals and Applications", 2nd Edition, Pearson Education.

E-Resources:

- 1. NPTEL Course "Analog communication", by Prof. Goutam Das (IIT Kharagpur) https://onlinecourses.nptel.ac.in/noc21_ee74/preview
- 2. NPTEL Course "Principles of Communication Systems-I", by Prof. Aditya.K. Jagannath https://nptel.ac.in/courses/108/104/108104091/

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

Semester: IV

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering)

Teaching Scheme (Hrs/week) Lecture Practical Tutorial Credit CIE ETE TW OR PR 03 02 - 04 40 60 - 25 Prerequisites: Programming and Problem Solving Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem CO4 Apply generic programming and exceptional handling concepts to write a program.							
Lecture Practical Tutorial Credit CIE ETE TW OR PR 03 02 - 04 40 60 - - 25 Prerequisites: Programming and Problem Solving Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem	Code: ECPC407						
O3 O2 - O4 40 60 25 Prerequisites: Programming and Problem Solving Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem							
Prerequisites: Programming and Problem Solving Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem	Tota						
Programming and Problem Solving Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem	125						
Course Objectives: 1. To explore programming skills of students, using object oriented programming concepts 2. To learn the syntax and semantics of the C++ programming language. 3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem							
 To explore programming skills of students, using object oriented programming concepts To learn the syntax and semantics of the C++ programming language. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - Understand different OOP features and types of functions. Apply the concept of inheritance to write a program. Compare polymorphism techniques and develop a solution for particular problem 							
 To learn the syntax and semantics of the C++ programming language. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - Understand different OOP features and types of functions. Apply the concept of inheritance to write a program. Compare polymorphism techniques and develop a solution for particular problem 							
3. To use the object-oriented paradigm in program development. Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem	s.						
Course Outcomes: After completion of this course, students will able to - CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem							
CO1 Understand different OOP features and types of functions. CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem							
CO2 Apply the concept of inheritance to write a program. CO3 Compare polymorphism techniques and develop a solution for particular problem							
CO3 Compare polymorphism techniques and develop a solution for particular problem	Understand different OOP features and types of functions.						
	Apply the concept of inheritance to write a program.						
CO4 Apply generic programming and exceptional handling concepts to write a program.	Compare polymorphism techniques and develop a solution for particular problem						
	Apply generic programming and exceptional handling concepts to write a program.						
Apply appropriate file operations and modes to write a program.	Apply appropriate file operations and modes to write a program.						
CO6 Illustrate STL Components and write a program using STL components.	Illustrate STL Components and write a program using STL components.						
Course Contents:							
Unit Description	uration (Hrs.)						
Fundamental Concepts of OOPs :							
Introduction: Introduction to Object Oriented Programming, Object Oriented							
Paradigm, Features of OOP, benefits of OOP. Data Types: variables and constants,	07						
Class – Data members, Member Functions, and class as abstract data type, Object							
Visibility Modes, Constructor & Types of Constructors, Destructor, Binding –							
static & dynamic, Inline Function, Static Members, Static Function, Friend							
Function, Friend Class, Array of Objects. Case Study: Demonstrate Class	3						
Animal/Car using object, constructor, destructor and functions Inheritance in C++:							
Derived class & base class, Types of inheritance: Public, Protected and Private							
2. Inheritance, Ambiguity in multiple inheritance & multipath inheritance,							

Constructor & Destructor in Inheritance, Order of Constructor and Destructor Call. Case Study: Demonstrate Inheritance and its types using Vehicle Hire Company

Introduction: Polymorphism – Compile time and Run time Polymorphism, Type

conversion, Pointer, Pointers to object, this pointer, Virtual function, Pure virtual

C++ Polymorphism:

3.

07

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	TOTAL	42
	students Mark list management using STL map.	
	seminar hall using STL Container Vector OR Demonstrate an application for	
	STL stack. Case Study: Demonstrate an application for Chair arrangement in a	
	algorithms, min-max algorithm, set operations. Tokenizer using file handling and	
6.	bidirectional and random access, Algorithms- basic searching and sorting	07
	associative containers, container adapters, Iterators- input, output, forward,	
	STL: Containers, algorithms and iterators, Containers- Sequence container,	
	Standard Template Library: Standard Template Library (STL), components of	
	Standard Template Library:	
	redirect output to file using C++ File handling functions	
	Objects, Sequential File Organization. Case Study: Demonstrate C++ program to	
5.	Operations on Characters, File Operations on Binary Files – Variables, Class	07
	mode, Error Handling functions in file, File Pointers and Their Manipulation, File	
	File Handling: Classes for file stream operation, Opening and closing a file - File	
	C++ File Handling:	
	Railway Reservation system for Adult/Child Passenger	
	in Login Page to any mail sever Like Gmail Demonstrate Ticket Reservation in	
	polymorphism and error handling Case Study: Demonstrate exception handling	
ᅻ.	Separating interfaces and implementation using C++ constructs - class, functions,	07
4.	Exception Handling: Definition and Types of exceptions, Exception handling using try-catch-throw. Catching mechanism, Exception handling in inheritance.	07
	Class Templates Template with multiple parameters. Exception Handling -	
	Generic Programming – Introduction to Template, Types- Function Template,	
	Generic Programming & Exception Handling using C++:	
	Vendor on fruit purchase.	
	function overloading. Demonstrate final amount calculation to be given to fruit	
	function, Abstract class. Case Study: Demonstrate Online Payment system using	

List of Experiments:

Perform any 08 experiment out of 13:

- 1. Write a C++ program to implement simple Arithmetic Calculator
- 2. Write a C++ Program
 - a. Even/ODD number Check
 - b. Check the character is Vowel or not
 - c. Check Leap Year
 - d. Create Pyramid and Pattern
 - e. Find the largest of 3 entered nos
- 3. Write a C++ program to perform following operations on an Array
 - a. Display ODD Indexed Nos.
 - b. Calculate Sum array elements,

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

- c. Calculate Average of Array Elements
- d. Add Or Delete the no. from an array
- 4. Given an array A of positive integers. Your task is to find the leaders in the array. An element of array is leader if it is greater than or equal to all the elements to its right side. The rightmost element is always a leader
- 5. Write a C++ program to display Month Name if month no is entered by User using
 - a. If-else
 - b. Switch case
 - c. Compare above 2 conditional control structure
- 6. Write a CPP to create class Student with appropriate member variable and member functions and make use of following
 - a. Constructors
 - b. Destructors
 - c. Inline, static, friend function
 - d. Dynamic memory allocation-deallocation
- 7. Write a CPP to implement following inheritances using car rental system.
 - a. Single Inheritance
 - b. Multilevel inheritance
 - c. Multiple Inheritance
 - d. Hierarchical Inheritance
- 8. Write a CPP to implement Online Payment system using function overloading for Online Shop.
- 9. Implement a class Complex which represents the Complex Number data type. Implement the following operations:
 - a. Constructor (including a default constructor which creates the complex number 0+0i).
 - b. Overloaded operator +, to add and subtract two complex numbers
 - c. Overloaded operator *, /to multiply and divide two complex numbers.
 - d. Overloaded << and >> to print and read Complex Numbers.
- 10. Write C++ program to calculate monthly and yearly expenses done on Education, Travel, Medical, Misc.
- 11. Implement CPP to demonstrate Exception Handling for Gmail Account Login OR ATM Pin Verification.
- 12. Write a C++ program to implement stack of characters and integers using function template.
- 13. Write a C++ program to generate Country-Currency chart of all countries across the globe using MAP Container

Text Books:

- 1. E. Balagurusamy, "Object-Oriented Programming with C++",7th edition, Graw-Hill Publication.
- 2. Deitel, "C++ How to Program", 4th Edition, Pearson Education.

Reference Books:

1. Herbert Scheldt, "C++-The complete reference", Eighth Edition, McGraw Hill Professional.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

E-Resources:

1. MOOC/ Video Lectures available at: NPTEL Lecture Link 1. Programming in C++ By Prof. Partha Pratim Das | IIT Kharagpur https://onlinecourses.nptel.ac.in/noc19_cs38/preview

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	ogram: B. Tech. (Electronics and Computer Engineering) Semester: I										
Course	: Sensors and A	pplications			Code: ECM						
	Teaching Sche	eme (Hrs/we	ek)		Evalu	ation Sc	heme (Ma	rks)			
Lectur	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	40	60	ı	-	-	100		
Prereq	uisites:										
	Electronics Engin	eering.									
Course	rse Objectives:										
	To compare various sensors and select appropriate sensor for a particular application.										
3.	To impart interd			_			.				
4.	To explain the a			_							
	To explain indus										
Course	Outcomes: Aft						1		•		
CO1	Describe perfo	ormance mea	isures, termi	nology of	sensors	and Cali	bration of	ınstru	mentation		
	systems.		_								
CO2	Explain workir	ng principle o	of temperatur	e and chei	mical sens	sors.					
CO3	Compare various flow and level sensing techniques and select appropriate technique for a specific										
	application.										
CO4	Explain workir	ng principles	of motion, li	ght and ra	diation de	tectors.					
CO5	Describe const	ruction and v	vorking princ	ciple of M	EMS and	SMART	sensors.				
CO6	Understand app	propriate Act	uators and fi	nal contro	l elements	s for a spe	ecific appli	cation.			
Course	Contents:										
Unit	Description						I	Ouration (Hrs.)			
	Fundamentals	of Sensors	& Transduc	er:							
	Definitions sensors & transducer, Classification of sensors and transducers,										
	Performance and Terminology: Accuracy, precision, resolution, threshold,										
1.	sensitivity, line	• •			-	-		_	07		
	lag, fidelity, dy		_		-						
	and transducers, Block diagram and description of Instrumentation system,										
	Instrument Cal		~								
	Temperature				1						
_	Temperature: RTD, thermistors, thermocouples, noncontact temperature										
2.	measurement-		• /*	N 475 \ A	, •	c	1 1	1	07		
	Semiconductor	-		M ⁷ /5), Ac	oustics se	ensors to	r sound le	vel			
	measurement, l	Humidity Sei	nsors.								

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

	Chemical sensors: classes of chemical sensors, Characteristics of chemical				
S	sensors, biochemical sensors.				
]	Flow and Level Sensing:				
]	Flow: Bernoulli Equation, Differential head type flow meters (Orifice, Venturi tube				
3.	and Flow Nozzle), Pitot static tube and Variable area type flow meter – Rotameter,	07			
3. 1	Electromagnetic and ultrasonic flow meters.				
]	Level: Float, DP Cell, Ultrasonic and Capacitance probe type level detection				
t	techniques.				
1	Weight, Motion, Light & Radiation Detectors:				
7	Weight- Load Cell and strain gauges, strain gauge signal conditioning.				
1	Displacement- LVDT, Ultrasonic, capacitive detectors, Proximity sensors				
4.	(inductive and optical).	07			
4.	Acceleration - Accelerometer characteristics, capacitive accelerometers,				
]]	Piezoelectric Accelerometer, Piezo-resistive accelerometer, thermal accelerometer.				
]	Light & Radiation detectors: Photo diodes, photo transistor, CCD, CMOS image				
S	sensors, gas flame detectors, Radiation detectors.				
I	MEMS & Smart Sensors:				
1	Magnetic field sensors – Hall effect and magneto-resistive elements (MRE),				
1	magneto-transistors, piezoelectric (PZT) sensors and actuators.				
5. I	Micro Electro Mechanical Systems (MEMS) – Bulk micromachining, micro-	07			
	machined absolute pressure sensor, Surface Micromachining-Hot wire anemometer				
1	micro-miniature temperature sensor, surface micromachined accelerometer and				
	SMART sensors.				
	Actuators and Final Control Elements:				
6	Pneumatic and hydraulic actuators- Directional control valves, Pressure control	07			
•	valves, Cylinders, Process control valves - Electrical actuators- Solenoids, DC	07			
1	motors, AC motors and Stepper motors.				
	TOTAL	42			

Text Books:

- 1. W. Bolton, "Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering", 3rd Edition, Pearson Education.
- 2. William C. Dunn, "Introduction to Instrumentation, Sensors, and Process Control", Artech House, Sensors Library.

Reference Books:

- 1. Curtis Johnson, "Process Control Instrumentation Technology", 7th Edition, Prentice Hall of India
- 2. Ernest O. Doebelin, "Measurement Systems: Application and Design", 5th Edition, McGraw-Hill.
- 3. David G. Alciatore, Michael B. Histand, "Introduction to Mechatronics and Measurement Systems", Tata McGraw-Hill.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

4. C.S. Rangan, G.R. Sarma, V.S.V. Mani, "Instrumentation Devices and Systems", 2nd Edition, Tata McGraw-Hill.

E-Resources:

- 1. Industrial Instrumentation, https://nptel.ac.in/courses/108105064
- 2. NOC: Sensors and Actuators, https://nptel.ac.in/courses/108108147

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Progra	am: B. Tech. (Ele	ctronics and	l Computer	r Enginee	ering)		Semest	er: IV	
Course	e: Quality Manage	ement Syste	m – II				Code: 1	ECMC4	02
	Teaching Schem	e (Hrs/wee	k)		Eval	luation So	cheme (Ma	rks)	
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total
-	02	-	01	-	-	25	-	-	25
Prereg	uisites:								
Interac	tive mind-set for	practical an	d quality th	ninking.					
Course	e Objectives:								
Unders	tanding the QMS	clauses and	l its PDCA	way of v	working in	an organ	ization.		
Course	e Outcomes: Afte	er completion	on of this co	ourse, stu	dents will	be able to) -		
CO1	Understand the	organizatio	and its fu	nctional	alignment	for QMS.			
CO2	Understand the	quality man	agement sy	ystem and	d processe	S.			
CO3	Know the leader	rship drive a	and involve	ement in	building q	uality cult	ture.		
Course	e Contents:								
Unit	Description							Duration (Hrs.)	
1.	Scope, Normativ	ve Referenc	es, Terms	& Defini	tion				04
2.	2. Context of the Organization: Understanding the organization and its context, Needs and expectations of interested parties, Determine the scope of the quality management system, Quality management system and its processes.							10	
3.	Leadership: Accountability, Responsibilities and Commitment for QMS culture, Quality policy.							14	
	TOTAL							OTAL	28
Text B	ooks:								
	Kanishka Redi "	Quality Ma	nagement"	', Oxford	University	y Press.			
1.	Kamsika Dedi,		0 11 3 4	[anageme	nt", McGi	raw Hill E	ducation.		
1. 2.	Subburaj Ramasa	amy, "Total	Quality M	anageme	,				
2. 3.	Subburaj Ramasa Dale H. Besterfie								
2. 3.	Subburaj Ramasa Dale H. Besterfie nce Books:	eld, "Total (Quality Ma						
2. 3.	Subburaj Ramasa Dale H. Besterfie	eld, "Total (Quality Ma						
2. 3. Refere 1. E-Reso	Subburaj Ramasa Dale H. Besterfie nce Books: QMS ISO 9001:2	eld, "Total (2015 Standa	Quality Ma ards	nagemen	t", Pearson	n Educatio	on.		

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering) Semester: I									•	
Course:	Course: Problem Solving Techniques – II Code: ECAE402									
Teaching Scheme (Hr/week) Evaluation Scheme (Mark								(arks)		
Lecture	Lecture Practical Tutorial Credit				ETE	TW	OR	PR	Total	
-	02	-	01	-	-	25	-	-	25	
Prerequi	sites:								•	
Interactiv	e mind-set for pr	ractical.								
Course (Objectives:									
1. To	o acquire basic k	nowledge of	Problem-so	olving pla	nning.					
2. To	o understand the	effectivenes	s check and	sustenan	ice.					
Course C	Outcomes: After	completion	of this cours	se, studer	nts will be	able to	-			
CO1	Know how to pla	an and execu	ite the probl	em solvi	ng.					
CO2	Understand the r	neasure and	monitoring	of proble	m-solvin	g plan ar	nd execution	on.		
CO3	0 1 01									
CO4	Understand the s	sustenance w	orking plan	and exec	cution.					
Course C	Contents:									
I In:4	Duration Duration									

Unit	Description					
	Description					
	Planning & Execution:					
1.	What is planning? PDCA way of thinking and planning, Inputs requirement	08				
	mapping.					
	Measure of Planning & Execution:					
2.	Key measures, How to measure and monitor? Reviews & Reporting with	08				
	documentation.					
	Effectiveness measures & Sustenance:					
3.	Define effectiveness measures, How to measure and monitor? Importance of	12				
	Sustenance, How to plan and execute sustenance activities.					
	TOTAL	28				

Text Books:

- 1. B. Mahadevan, "Operations Management: Theory and Practice", Pearson Education India.
- 2. L.M. Prasad, "Principles and Practices of Management", Sultan Chand & Sons.

Reference Books:

1. The PDCA Cycle for Industrial Improvement: Applied Case Studies (Synthesis Lectures on Engineering, Science, and Technology), Springer.

E-Resources:

1. Coursera, "Initiating and Planning Projects" - https://www.coursera.org/learn/project-planning

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering)								Semester: IV		
Course: Python Programming Code: CEVS405								'S405		
T		Evalı	ation Sc	heme (M	arks)					
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
- 02 - 01 50 -								50		

Prerequisites:

- 1. Basic knowledge of computer operations and logical reasoning.
- 2. Familiarity with programming fundamentals like variables, loops, and conditionals.
- 3. Understanding of basic mathematics and algorithmic thinking

Course Objectives:

- 1. To be able to introduce core programming basics and various Operators of Python programming language.
- 2. To demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries.
- 3. To understand about Functions, Modules and Regular Expressions in Python Programming

Course	Course Outcomes: After completion of this course, students will able to -						
CO1	Understand the basic concepts of Python Programming.						
CO2	Demonstrate mathematical and string manipulation functions in Python.						
CO3	Apply core python scripting elements such as flow control structures and loops						
CO4	Develop essential skills in python programming concepts like data structures and different built in functions.						
CO5	Apply a modular programming approach by making use of functions						
CO6	Demonstrate the ability to data frames, plots and files in different modes.						

List of Experiments:

Perform any Two from each group

Group A - Basic Arithmetic Operations

- 1. Write a Python program to display "Welcome to Python Programming for ECE" and perform basic arithmetic operations (addition, subtraction, multiplication, and division) on two user-input numbers.
- 2. Program to Swap two variables.
- 3. Program to find maximum of two or three numbers
- 4. Program to check if a number is even or odd, number is positive, negative or 0.
- 5. Write a Python program to generate the Fibonacci series up to n terms and check whether a given number is prime or not.
- 6. Write a Python function to calculate the factorial of a number using recursion. Also, define a user function to calculate the square of a number.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Group B - Basic OOPs Operations & Data Types

- 1. Write a Python program to input three voltages and determine which one is maximum using conditional statements.
- 2. Perform oops operations using python class object, operator overloading, inherence, polymorphism, encapsulation
- 3. Write a Python program to input a list of sensor readings and perform operations such as sorting, searching, slicing, and finding maximum/minimum values.
- 4. Write a Python program to input a string and display the frequency of each character using a dictionary
- 5. Write a Python program to create two sets of signal IDs and perform union, intersection and difference operations
- 6. Write a Python program for sensor interface simulator using class with dictionary.

OR

7. Write a Python program for communication system simulator using class, polymorphism, inheritance

Group C - Basic Python Libraries

- 8. Write Python programs using lambda, map(), filter(), and reduce() to process a list of signal amplitudes (e.g., filter values above threshold).
- 9. Write a Python program to define a class Electronic Device with attributes like name, power and voltage. Create objects and display their data.
- 10. Write a Python program to check if a list is Empty or Not.
- 11. Write a Python program to create and view elements of a list.
- 12. Write a Python program to access List Index and Values
- 13. Write a Python program to add two Lists.

Group D - Programming using Python Libraries

- 14. Write a Python program to read data from a file (text or CSV) and count the number of lines, words and characters. Also, write back processed data to a file.
- 15. Write a Python program to handle exceptions like divide by zero, file not found and invalid input using try-except blocks.
- 16. Write a Python program to perform basic array operations, matrix addition, subtraction and multiplication using NumPy.
- 17. Write a Python program to generate and plot sine, cosine and square wave signals using matplotlib.
- 18. Write a Python program using Pandas to load sensor data from a CSV file, display basic statistics, filter records based on conditions and visualize data.

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

19. Write a Python Program to keep record of students data ,manipulate files to store, update and delete students information.

Text Books:

1. Michael T. Goodrich, Roberto Tammassia, Michael H. Goldwasser, "Data structures and algorithm in Python," Willey Publications.

Reference Books:

- 1. Allen Downey, Jeffrey Elkner, Chris Meyers, "How to Think Like a Computer Scientist: Learning with Python", Dreamtech Press.
- 2. Yashavant Kanetkar, A. Kanetkar, "Let Us Python", BPB Publications.
- 3. Eric Matthes, "Python Crash Course", No Starch Press.
- 4. Luciano Ramalho, "Fluent Python", O'Reilly Media.
- 5. Mark Lutz, "Learning Python", O'Reilly Media.

E-Resources:

- 1. www.nptelvideos.in
- 2. https://snakify.org/en/
- 3. https://docs.python.org/3/

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Program: B. Tech. (Electronics and Computer Engineering)							Semester	:: IV	
Course: Internship – III							Code: E0	CIN403	
Teac	Evaluation Scheme (Marks)								
Lecture	Practical	Tutorial	Credit	CIE ETE TW OR PR Tota					Total
-	-	-	02	25 25					

Preamble:

Internships serve as vital educational and career development experiences, offering practical exposure in a specific field. Employers seek individuals who possess the necessary skills and an understanding of industry environments, practices, and cultures. This internship is designed as a structured, short-term, supervised training program, often centered on specific tasks or projects with clear timelines. The primary goal is to immerse technical students in an industrial setting, providing experiences that cannot be replicated in the classroom. This exposure aims to develop competent professionals who understand the social, economic, and administrative factors influencing the operations of industrial organizations.

Course Objectives:

- 1. Exposure to students to the industrial environment, which cannot be provided in the classroom and hence creating deployable professionals for the industry.
- 2. Learn to implement the technical knowledge in real industrial situations.

Course	Course Outcomes: After completion of this course, students will be able to -					
CO1	Gain exposure to industry practices and understand how academic concepts are applied in					
COI	professional settings.					
CO2	Develop and demonstrate effective communication and teamwork skills within a work					
	environment.					
CO3	Improve your problem-solving and time management skills by working in real-world industry					
COS	settings.					

Internship Requirements

- 1. **Internship Duration:** It is mandatory for all students to undergo an internship after every semester during vacations for the duration of 3 to 5 weeks. Internships completed during this period will be considered for the assessment of Term Work (TW).
- 2. Internship Opportunities: Students can explore various opportunities for internships at:
 - a. Industries
 - b. Research labs or organizations
 - c. Collegiate clubs
 - d. In-house research projects
 - e. Online internships
- 3. **Support and Assistance:** Students can seek assistance for securing internships from:
 - a. The Training and Placement cell, along with departmental coordinators
 - b. Department or institute faculty members
 - c. Personal contacts
 - d. Directly connecting with industries or organizations

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE - 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

NBA Accredited, NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

- 4. **Request Letter:** Once an industry, research organization, or collegiate club is identified, students must obtain a request letter from the concerned department or placement office. This letter, in the standard format must be duly signed by the authority, should be addressed to the HR manager or relevant authority.
- 5. **Confirmation Letter:** Students must submit the confirmation letter from the industry, research organization, or collegiate club to the Internship Coordinator and the Head of Department (HOD) office.
- 6. **Joining Report:** Upon commencing the internship, students must submit the joining report, joining letter, or a copy of the confirmation email to the Internship Coordinator and the HOD office.
- 7. **Faculty Mentor:** A faculty member will be assigned as a mentor to a group of students. The mentor will be responsible for monitoring, evaluating, and assessing student internship activities. The faculty mentor is also required to visit the internship location and submit formal feedback to the Internship Coordinator.
- 8. **Faculty Visits:** Faculty members are advised to visit the internship site once or twice during the internship period to monitor progress.
- 9. **Progress Report:** Students must submit progress report fortnightly to their faculty guide and the final internship report to the Internship Coordinator and department office.
- 10. **Evaluation Report:** After the completion of the internship, the mentor, along with the assessment panel members, should submit the evaluation report of the students to the department office and the Internship Coordinator.
- 11. **Internship Certificate:** Students must receive the Internship Certificate from the industry and submit it to the Internship Coordinator and department office.
- 12. **Presentation and Assessment:** Students are required to give a presentation on their internship work as part of the term work. The internship diary and report will also be verified and assessed.