(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING Curriculum Structure and Syllabus of F.Y. M. Tech. - Mechanical Engineering Design Engineering (With effect from - Academic Year 2024- 25)

VISION OF THE INSTITUTE

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION OF THE INSTITUTE

- To achieve academic excellence through innovative teaching and learning process.
 - To imbibe the research culture for addressing industry and societal needs.
 - To inculcate social attitude through community engagement initiatives.
 - To provide conducive environment for building the entrepreneurial skills.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

VISION:

To be a premier institute in technical education by imparting academic excellence, research, social and entrepreneurial attitude.

MISSION:

- M1: To achieve academic excellence through innovative teaching and learning process.
- M2: To imbibe the research culture for addressing industry and societal needs.
- M3: To inculcate social attitude through community engagement initiatives.
- M4: To provide conducive environment for building the entrepreneurial skills.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- **PEO1:** To produce post-graduate engineers to participate in innovative and integrative activities desired for modern design engineering by developing their competencies and contemporary technical skills.
- **PEO2:** To make post-graduate engineers proficient in contributing at a level of research and development in the fields of advanced engineering design of mechanical engineering systems.
- **PEO3:** To make post-graduate engineers develop life skills to become professional design engineers, administrators, or academicians and engage in lifelong learning by adopting techno-social developments of the nation.

PROGRAM OUTCOMES (POs):

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems.
- **PO2:** An ability to write and present a substantial technical report/document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

PROGRAM SPECIFIC OUTCOMES (PSOs):

- **PSO1:** Apply knowledge of design engineering for development of effective and innovative solutions to engineering problems.
- **PSO2:** Apply appropriate methodology, contemporary hardware and software tools to solve complex engineering problems in the domain of design engineering.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

LIST OF ABBREVIATIONS

Abbreviation	Description
PCC	Programme Core Course
PEC	Programme Elective Course
MDM	Multidisciplinary Minor
OE	Open Elective - Other than a particular program
VSEC	Vocational and Skill Enhancement Course
MC	Management Courses
DIS	Dissertation Phase
MOOC	Massive Open Online Course -I
M. Tech.	Master of Technology
L	Lecture
Р	Practical
Т	Tutorial
Н	Hours
CR	Credits
CIE	Continuous Internal Evaluation
ETE	End Term Examination
TH	Theory
TW	Term Work
OR	Oral
PR	Practical

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

First Year M. Tech. – Design Engineering: Semester - I

				T	eacl	ning S	Sche	me	Evaluation Scheme					
Course	Course	Course Name			(h	rs/W	eek)		(Marks)					
Code	Туре		т	D	ц	CR				TW DD			Total	
			L	I	1 11	TH	PR	Total	CIE	LIL	1 **	IK	UK	Total
MEDE101	PCC	Applied Mathematics	4	-	4	4	-	4	50	50	-	-	-	100
MEDE102	PCC	Advanced Stress Analysis	4	-	4	4	-	4	50	50	-	-	-	100
MEDE103	PCC	Analysis and Synthesis of	3		3	3		3	50	50	-	-	-	100
MEDEI05		Mechanisms	ſ		5	5								
MEDE104	PEC	Program Elective – I^*	3	-	3	3	-	3	50	50	-	-		100
	OEC	Open Elective – I [#]	3	-	3	3	-	3	50	50	-	-	-	100
MEDE106	IC	Numerical Simulation		2	2		1	1			25	25		50
WIEDEIUU		Lab	-	2	2	-	1	1	-	-	23	23	-	50
MEDE107	LC	Design Engineering Lab-I	-	2	2	-	1	1	-	-	25	-	25	50
MEDE108	SEM	I Seminar		2	2	-	1	1	-	-	25	-	25	50
MEDE100	MC	Audit Course – I:	1	_	1	_	_	_	_	_		_		_
WIEDE109	IVIC	Technical Paper writing	1		1	_	_	-	_	_	_		_	-
Total				6	24	17	3	20	250	250	75	25	50	650

* Program Elective – I: Choose any one from the following:

Course Code	Course Type	Program Elective-I
MEDE104A	PEC	Engineering Optimization Techniques
MEDE104B	TEC	Industrial Tribology

Open Elective – I: Choose any one from the following:

Course Code	Course Type	Open Elective – I	Offered by Department
<u>CODS105</u>		Cloud Computing for Data Science	Computer
<u>EEPS105</u>	OFC	Industrial Automation	Electrical
<u>ETIS105</u>	OLC	Internet of Things	E&TC
<u>MERA105</u>		Microcontrollers Architecture and Programming	Mechanical

Director ZES's Zeal College of Engineering & Research Narhe, Pune - 411041.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

First Year M. Tech. – Design Engineering: Semester - II

Course	Course			T	each	ning S	Sche	me	Evaluation Scheme					
Code	Tvpe	Course Name				CR						rks)		
0040	-58-		L	Р	Η	TH	PR	Total	CIE	ETE	TW	PR	OR	Total
MEDE201	PCC	Advanced Mechanical Vibrations & Acoustics	4	-	4	4	-	4	50	50	-	-	-	100
MEDE202	PCC	Research Methodology and Intellectual Property Rights	4	-	4	4	-	4	50	50	-	-	-	100
MEDE203	PCC	Finite Element Method	3	-	3	3	-	3	50	50	-	-	-	100
MEDE204	PEC	Program Elective – II*	3	-	3	3	-	3	50	50	-	-		100
	OEC	Open Elective – II [#]	3	-	3	3	-	3	50	50	-	-	-	100
MEDE206	LC	Program Elective Lab-I	-	2	2	-	1	1	-	-	25	25	-	50
MEDE207	LC	Design Engineering Lab- II	-	2	2	-	1	1	-	-	25	-	25	50
MEDE208	DIS	Dissertation Phase - I	-	2	2	-	1	1	-	-	25	-	25	50
MEDE209	MC	Audit Course - II : Constitution of India	1	-	1	-	-	-	-	-	-	-	-	-
Total				6	24	17	3	20	250	250	75	25	50	650

* Program Elective – I: Choose any one from the following:

Course Code	Course Type	Program Elective - II
MEDE204A	PEC	Advanced Machine Design
MEDE204B	TEC	Fatigue and Fracture Analysis

Open Elective – II: Choose any one from the following:

Course Code	Course Type	Open Elective – II	Offered by Department
<u>CODS205</u>		IoT and Sensor Data Analysis	Computer
<u>EEPS205</u>	OEC	Electric Vehicles	Electrical
<u>ETIS205</u>	OEC	Embedded System	E&TC
<u>MERA205</u>		Micro Electro Mechanical Systems	Mechanical
Guuli Bos Chairman	1	Content of Engine errors of Engine error	Atlante. Director

ZES's Zeal College of Engineering & Research Narhe, Pune - 411041.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

INDEX

Sr. No.	Course Code	Course Name I							
First Year M. Tech. Design Engineering : Semester – I									
1	MEDE101	Applied Mathematics	7						
2	MEDE102	Advanced Stress Analysis	9						
3	MEDE103	Analysis and Synthesis of Mechanisms	11						
4	MEDE104	Program Elective – I	13-16						
5		Open Elective – I	17-24						
6	MEDE106	Numerical Simulation Lab	25						
7	MEDE107	Design Engineering Lab – I	26						
8	MEDE108	Seminar	27						
9	MEDE109	Audit Course – I: Technical Paper writing	28						
	First Y	ear M. Tech. Design Engineering : Semester – II							
10	MEDE201	Advanced Mechanical Vibrations & Acoustics	31						
11	MEDE202	Research Methodology and Intellectual Property Rights	33						
12	MEDE203	Finite Element Method	35						
13	MEDE204	Program Elective – II	37-40						
14		Open Elective – II	41-48						
15	MEDE206	Program Elective Lab – I	49						
16	MEDE207	Design Engineering Lab – II	51						
17	MEDE208	Dissertation Phase – I	53						
18	MEDE209	Audit Course – II: Constitution of India	54						

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS SEMESTER - I

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	Program: M. Tech. (Mechanical–Design Engineering)Semester: I											
Course	e: Applied Mathe	matics		Code: MEDE1								
	Teaching Schem	ne (hrs/wee	k)		Evalua	ation Scl	neme (M	(arks)				
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total			
04	-	-	04	50	50	-	-	10				
Prereq	uisites:											
1.	The students she	ould have	good knov	wledge of	f set theory	, probab	oility, an	d basic I	Numerical			
	Techniques.											
2.	The students sho	uld clear un	derstandin	g of Engi	neering Mat	thematics	s-I, II, an	d III				
Course	e Objectives:											
1.	To find the roots	of polynom	ials in Sci	ence and	Engineering	g problem	ns.					
2.	To differentiate	and integra	ate a func	tion for	a given set	of tabu	lated da	ta, for er	gineering			
	applications.											
3.	To understand E	igen values	and Eigen	Vectors	to maintain	relations	ships bet	ween two	variables			
	while solving pro	oblems.										
4.	To explore the te	chniques of	linear algo	ebra.								
5.	To apply various	mathemati	cal method	ls involvi	ng arithmeti	c and alg	ebra to s	olve prob	lems.			
Course	e Outcomes: At t	he end of th	e course, t	he studen	$\frac{1}{1}$ t will be abl	e to -	.1 1	1	1 1 114			
CO1	distribution	basic coi	ncepts of	linear a	algebra, nu	merical	methods	s, and p	robability			
CO2	Apply the conc	ept of linea	r algebra,	numerica	al methods,	and prob	ability o	listributio	n to solve			
02	the problems ar	ising in the	Engineerin	ng field								
CO3	Analyze mathe algebra	matical pro	oblems ar	rising in	Engineerir	ng, using	g the c	concepts	of linear			
CO4	Apply the math	nematical ki	nowledge o	of numer	ical method	s, and pr	obability	v distribut	ion in the			
04	Engineering field	ld.										
CO5	Presentation of	application	of Mathen	natics in I	Engineering	Domain						
CO6	Understand the	basic conce	pt of statis	tical mod	lels							
Course	e Contents:											
Unit				Desci	ription							
	Roots of Polyne	omial and T	Franscend	ental Eq	uation:							
1.	Solving algebra	ic equation	Newton-	Raphson	method, See	cant metl	nod. Mu	ltiple root	ts, Simple			
	fixed-point itera	tion.										
	Numerical Diff	erentiation	and Integ	ration:								
	Numerical Diffe	prentiation for	or equal wi	dth and N	lumerical In	tegration	: Newton	n - Cotes	and Gauss			
2.	Quadrature Int	egration fo	ormulae (S	Simpson	1/3 rule),	Rombe	rg integ	gration, 1	Numerical			
	differentiation	(equal wi	dth only)	Applied	d to engir	neering	problem	s, High	accuracy			
	differentiation for	ormulae										
3.	System of Line	ar Algebra	ic Equatio	ons and F	Zigen Value	- vector]	Problem	IS:				
	Gauss eliminat	ion method	l, Gauss-J	ordan el	imination r	nethod,	Triangul	arization	method,			

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Cholesky method, Partition method, Iteration methods. Bounds on Eigen values, Jacobi method								
	for symmetric matrices, Givens method for symmetric matrices, Rutishauser method for								
	arbitrary matrices, Power method.								
	Probability Distribution and Sampling Theory:								
4.	Discrete probability distribution and statistical value. Poisson's process. Normal distribution.								
	Chi-square test for goodness of fit test (Poisson's, uniform, proportion).								
	Linear Transformation:								
5.	Introduction to Linear transformation, the matrix of linear transformation, Orthogonality using								
	G-S method, Least Squares, SVD.								
6	Statistical Models:								
0.	Regression; Cluster analysis, Principal component analysis.								
Text E	Books:								
1.	S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 2005.								
2.	Steven C. Chapra and Raymond P. Canale, "Numerical Methods for Engineers", Tata McGraw								
	Hill, 4 th Ed, 2002.								
3.	M. K. Jain, S. R. K. Iyengar, and R. K. Jain, "Numerical Methods for Scientific and Engineering								
Deferre	Computation", New Age International, 2003.								
Refere	ence Books:								
1.	Pervez Moin, "Fundamentals of Engineering Numerical Analysis", Cambridge, 2010.								
2.	David C. Lay, "Linear Algebra and its Applications", 3 rd edition, Pearson Education, 2002.								
5. 4	S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, 2003. Gilbert Strong, "Linear Algebra", Congage India Private Limited 4 th edition								
4. 5	David C. Lay, "Linear Algebra and its Applications" 3 rd edition. Pearson Education 2002								
E-Res	ources:								
1.	NPTEL course on Numerical Methods in Civil Engineering by Dr. A. Deb. IIT Kharagpur								
	https://nptel.ac.in/courses/105105043								
2.	Course on Numerical Methods for Engineers by Jeffrey R. Chasnov								
	https://www.coursera.org/learn/numerical-methods-engineers								
l	· · · · · · · · · · · · · · · · · · ·								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	ram: M. Tech. (Mechanical–Design Engineering) Semester: I									
Course	e: Advanced Stres	ss Analysis					Co	de: MED	DE102	
	Teaching Schem	ne (hrs/wee	k)		Evalu	ation Sc	heme (N	(larks)		
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
04	-	-	04	50	50	-	-	-	100	
Prereq	uisites:									
Strengt	h of Materials, D	esign of ma	chine elem	ents						
Course	e Objectives: At t	the end of th	ne course, t	the studen	t will be a	ble to -				
1.	1. To understand the concept of three-dimensional stress and strain at a point.									
2.	To understand str	ess distribu	tion in com	ponents s	ubjected to	unsymm	netrical b	ending ar	nd torsional	
	loading.									
3.	To study methods	s of comput	ing contac	t stresses	and deflect	tions				
4.	To study differen	t technique	s of experin	mental str	ess analysi	is				
Course	e Outcomes: At t	he end of th	e course, t	he student	will be ab	ole to -				
CO1	Determine stress	s distributio	n along a c	componen	t under dif	ferent loa	ading cor	nditions.		
CO2	Understand the	behavior of	walled sec	tions.						
CO3	Solve real-time	problems su	bjected to	bending.						
CO4	Analyze failure	modes and	l phenome	ena in two	o and thre	e-dimens	sional str	resses of	composite	
004	material.									
CO5	Understand the	concept of c	contact stre	sses in m	echanical c	componer	nt.			
CO6	Apply the know	ledge of the	Experime	ntal Stres	s Analysis.					
Course	e Contents:									
Unit				Descr	iption					
	Theory of Elast	ticity:								
	Theory of Elasti	city probler	ns in two c	limension	s - stress s	train rela	tionship	for brittle	e materials,	
1.	ductile materials	s. Compatib	oility equat	tions in tw	vo and thr	ee dimen	isions, fr	ee body	diagram of	
	complicated stru	uctures and	stress cale	culations,	stress fun	ctions in	rectang	ular and	cylindrical	
	coordinate syste	ems.								
	Theory of Tors	ion:	C					. .		
2.	Theory of Tors	10n Torsior	of generation	al prisma	tic bars of	t solid so	ection, N	lembrane	e Analogy,	
	Torsion of Thin	walled tube	es, Torsion	of Thin v	valled Mu	ltiple-Cel	ll closed	sections,	Torsion of	
	rolled Sections.									
	Bending And S	Shear Cent	re:	1 1	. •	11 "		1 1 4	m ,· ·	
3.	Concept of shea	ar center in	symmetric	cal and ur	isymmetric	cal bendi	ng, stres	s and def	flections in	
	beams subjected	to unsymi	netrical be	ending, sn	ear center	IOT thin	wall bea	im cross	section, an	
	open section with		n symmetr	y, genera	open sect	ion, and	closed se	cuon.		
4.	Stress Analysis	of Enginee	ering Plast		omposites	S:			n two and	
	Types of engineering plastics (Nylon, ABS, PP) failure modes, failure phenomenon in two and									

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	three-dimensional stress analysis, wear and tear of plastics, impact properties of plastics, types
	of composites, evaluation of elastic properties of composites.
	Contact Stresses:
	Geometry of contact surfaces, method of computing contact stresses and deflection of bodies in
5.	point contact, stress for two bodies in line contact with load normal to contact area and load
	normal and tangent to contact area, gear contacts, contacts between cam and follower, ball
	bearing contacts.
	Experimental Stress Analysis:
	Dimensional analysis, analysis techniques, strain gauges, types of strain gauges, materials,
6	configuration, instrumentation, characteristics of strain gauge measurement.
0.	Theory of photo-elasticity, elements of polariscope, simple and circular polariscope, fringes in
	dark and white field, isoclinic and isochromatic fringe patterns, evaluation of stresses from these
	fringe patterns.
Text E	Books:
1.	Timoshenko and Goodier, "Theory of Elasticity", McGraw-Hill.
2.	Richard G. Budynas, "Advanced Strength and Applied Stress Analysis", McGraw-Hill.
3.	Boresi, Schmidt, and Sidebottom, "Advanced Mechanics of Materials", John Wiley & Sons.
Refere	ence Books:
1.	Cook and Young, "Advanced Mechanics of Materials", Prentice Hall.
2.	L.S. Shrinath, "Advanced Mechanics of Solids", Tata McGraw-Hill.
3.	S. Timoshenko, "Advanced Strength of Materials", Vol. 1, CBS.
4.	Den Hartog, "Advanced Strength of Materials", Dover Publications Inc.
5.	James W. Dally and William F. Riley, "Experimental Stress Analysis", McGraw Hill Education.
6.	E.J. Hern, "Mechanics of Materials", Butterworth-Heinemann Publisher.
7.	Andrew Singer and Ferdinand L. Singer, "Strength of Materials", Longman Publisher.
E-Res	ources:
1.	NPTEL course on Experimental Stress Analysis, by Prof. K. Ramesh, IIT Madras
	https://nptel.ac.in/courses/112106068

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)							Seme	Semester: I		
Course:	Analysis and S	ynthesis of M				Code: MEDE103				
,	Feaching Sche	eme (hrs/weel	K)	Evaluation Scheme (Marks)						
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	-	-	03	50	50	-	-	-	100	
Prerequ	isites:									
Mechani	cal Engineerin	ng Fundamen	tals, Math	ematical N	Aethods :	for Engi	neering,	Introduc	ction to	
Kinematics and Dynamics.										
Course	Course Objectives:									
1. T	o understand fu	undamental co	oncepts in r	nechanisms	and kine	matics.				
2. T	o study kinema	atic analysis to	echniques f	or planar m	echanism	S.				
3. T	o explore kiner	matics analysi	s of compl	ex mechani	sms.					
4. 1 5. T	o know the imp	portance of cu	rvature the	ory and its	applicatio	ons.				
5. 1 6. T	o synthesize pl	anar mechani	sms analyti	cally and g	raphically	<i>.</i>				
0. 1 Course	o apply graphic	cal synthesis t	ecnniques	to mechanis	$\frac{11}{11}$ he able	•				
Course	Jucomes: Al		$\frac{1}{1}$ course, the			10 -				
	Understand th	e fundamenta	ls of mecha	anism and k	inematic	principles	5.			
CO2	Apply advance	ed kinematic	analysis tec	chniques to	complex 1	mechanis	ms.			
CO3	Utilize curvati	ure theory in i	nechanism	design and	analysis.					
CO4	Synthesize pla	inar mechanis	$\frac{\text{ms using a}}{1}$	nalytical me	ethods.	•				
C05	Implement gra	aphical synthe	sis techniq	$\frac{\text{ues for mec}}{1}$	hanism d	esign.				
C06	Perform advar	nced kinemati	c analysis (of spatial m	echanism	s.				
Course	Contents:			D	•					
Unit	TZ:			Descript	10 n					
	Kinematics Analysis of Planer Mechanisms:									
1.	Introduction to Mechanisms and Kinematics, planar and spatial mechanisms; degree of									
	treadom, Grashoff's and Grubler's criteria, equivalent linkages, Mechanical advantage and									
	Kinomatics A	nalysis of Co	mploy Mo	chanisms.		115				
	Kinematics Analysis of Complex Mechanisms:									
2.	complex mec	hanisms by $\frac{1}{2}$	the Norma	l Accelerat	ion meth	od and	Auxiliary	$\frac{1011}{1000}$ and $\frac{1000}{1000}$	Method	
	Introduction to Goodman's Method									
			memou.							
	Curvature th	eory:	a inflati		lan Carre	a a constitu	Dal-11	on 000	motion -	
3.	Fixed and mo	ving centrode	s, inflection \mathbf{D}_{2}	in circle, Eul	ler-Savary	y equation	l, BODIIII	ier consu	uctions,	
	cubic of statio	nary curvatur	с, Бан s pc	mi, and app	JICations	in uwell	meenam	51115.		
	Analytical Sy	nthesis of pla	nar mech	anisms:						
4.	Synthesis for	four accuracy	points, con	mpatibility	condition	, Introduc	tion to c	omplex 1	numbers	
	method of syn	thesis, the dya	nd, centre p	oint and cire	cle point o	circles, gr	ound piv	ot specif	ications.	

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

-									
	Graphical Synthesis of planar mechanisms:								
5	Graphical synthesis for function generation and rigid body guidance with two and three								
5.	accuracy points using Relative pole method & Inversion method, center point and circle point								
	curves.								
	Kinematics of Spatial Mechanisms:								
6.	Kinematic Analysis of Spatial Mechanisms, Denavit-Hartenberg parameters, Velocity and								
	acceleration analysis of spatial linkages.								
Text B	Books:								
1.	Arthur Erdman, George Sandor, Sridhar Kota, "Mechanism Design" Analysis and Synthesis, 21								
	June 2001.								
2.	Michael M. Stanisic, Mechanisms and Machines : Kinematics, Dynamics and Synthesis.								
3.	Michael J. Rider, Design and Analysis of Mechanisms: A Planar Approach.								
Refere	ence Books:								
1.	Ghosh and A. K. Mallik, "Theory of Machines and Mechanisms", Affiliated East-West Press.								
2.	R. S. Hartenberg and J. Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill.								
3.	A. G. Erdman and G. N. Sandor, "Mechanism Design - Analysis and Synthesis" (Vol. 1 and 2),								
	Prentice Hall.								
4.	J. E. Shigley and J. J. Uicker, "Theory of Machines and Mechanisms", 2 nd Ed., McGraw-Hill.								
5.	Robert L. Norton, "Design of Machinery: An Introduction to the Synthesis and Analysis of								
	Mechanisms and Machines", Tata McGraw-Hill, 3 rd Edition.								
6.	A. S. Hall, "Kinematics and Linkage Design", Prentice Hall of India.								
E-Res	ources:								
1.	NPTEL course on Kinematics of Mechanisms and Machines, By Prof. Anirvan DasGupta, IIT								
	Kharagpur. https://archive.nptel.ac.in/noc/courses/noc21/SEM1/noc21-me08/								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)Semester: I									[
Cours	se: Program Elect	ive – I (Eng	gineering (Optimizati	Optimization Techniques) Code: MEDE104A							
	Teaching Schen	ne (hrs/wee	ek)	Evaluation Scheme (Marks)								
Lectu	ure Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total			
03	-	-	03	50	50	-	-	-	100			
Prere	quisites:											
The co	ourse is required t	he Mathem	atical Fou	ndations a	and Engine	eering Ar	nalysis r	egarding O	ptimization			
Techn	iques.											
Cours	se Objectives:											
1.	To impart know	ledge on the	eory of opt	imization	and condit	tions for o	optimali	ty for unco	nstraint and			
	constraint optim	ization pro	olems.									
2.	To Inculcate mo	deling skill	s necessary	y to descri	be and for	mulate op	otimizat	ion problen	ns in design			
	and manufactur	ng										
3.	Familiarize with	the workin	ng principl	e of optin	nization al	gorithms	used to	solve line	ar and non-			
	linear problems		-									
Cours	se Outcomes: At	the end of t	he course,	the stude	nt will be a	able to -						
CO1	Comprehend the	techniques	and appli	cations of	Engineeri	ng optim	ization.					
CO2	Apply basic con	cepts of ma	thematics	to formul	ate an opti	mization	probler	n.				
CO3	Apply the Class	ical optimiz	ation tech	niques for	engineeri	ng applic	ations.					
CO4	Analyze charact	eristics of a	general li	near prog	ramming p	oroblem.						
CO5	Analyze charact	eristics of a	general N	onlinear j	programmi	ing probl	em.					
CO6	Analyze and app	preciate vari	ety of per	formance	measures	for variou	is optim	nization pro	blems.			
Cours	se Contents:											
Unit				Desc	ription							
	Introduction to	Optimizat	ion: f. Ontimia	ation St	atomant a	f on On	timizati	on nuchlou	n Ontimal			
1	Engineering application of Optimization, Statement of an Optimization problem, Optimal Problem formulation and Classification of Optimization problem. Optimum design concepts:											
1.	Definition of G	obal and L	ocal optim	na, Optim	ality criter	ia, Revie	w of ba	sic calculu	s concepts,			
	Global optimalit	y.	I	, 1	5	,			1 /			
	Introduction to	Mathemat	tical Mode	eling:								
	Introduction to I	Mathematic	al Modelir	ng, Types	of Modeli	ng. Objec	ctive fur	nction, Con	straints and			
2.	Constraint surface	ce; Mathem	atical mod	leling cha	racteristics	s and limi	tations,	Formulatio	on of design			
	problems.											
	Classical Optin	nization Te	chniques:									
3.	Engineering app	lications of	optimizat	ion, class	ification of	f optimiz	ation pr	oblem, sing	gle variable			
optimization, multi variable optimization with no constraint, equality constraint, in-							in-equality					
	constraint.	mine										
	Standard form of	of Linear p	oorammin	ng (LP) 🤇	Statement	and oran	hical so	lution of I	P problem			
4.	Simplex algorith	m. two pha	ases of the	simplex	method. P	rimal-dua	al simpl	ex method.	Sensitivity			
	or post optimality analysis, applications in engineering											

	Non-Linear Programming:									
5.	One-dimensional minimization - exhaustive search, golden section method, quasi-newton method,									
	random search methods, Powell's method.									
	Modern Methods of Optimization:									
6.	Genetic algorithms, Simulated Annealing, Particle Swarm Optimization, Ant Colony									
	Optimization, Teaching Learning Based Optimization, Introduction to ANN.									
Text	Books:									
1.	J.S. Arora, "Introduction to Optimum Design", Elsevier.									
2.	E.K. P. Chong and S.H. Zak, "An Introduction to Optimization", Wiley.									
3.	D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-									
	Wesley Longman Publishing, 1989.									
4.	R. Saravanan, "Manufacturing Optimization through Intelligent Techniques", Taylor & Francis									
	Publications, 2006.									
Refer	ence Books:									
1.	Raphael T. Haftka and Zafer Gurdal, "Structural Optimization", Kluwer Academic Publishers.									
2.	. M. Asghar Bhatti, "Practical Optimization Methods with Mathematical Applications", Springer.									
3.	. M. P. Bendse and Q. Sigmund, "Topology Optimization – Theory, Methods and Applications".									
4.	X. Huang and Y.M. Xie, "Evolutionary Topology Optimization of Continuum Structures: Methods									
	and Applications", Wiley, 2010.									
5.	Singiresu S. Rao, "Engineering Optimization: Theory and Practice", John Wiley & Sons.									
6.	J.N. Kapur, "Mathematical Modelling", New Age International Publication.									
7.	K. Deb, "Optimization for Engineering Design", PHI.									
8.	Belegundu and Chandrupatla, "Optimization Concepts and Applications in Engineering", Pearson									
	Education.									
E-Res	sources:									
1.	NPTEL Course on Optimization, IIT Kharagpur, Prof. A. Goswami, Dr. Debjani Chakraborty									
	https://nptel.ac.in/courses/111105039									
2.	NPTEL Course on Introduction to Mathematical Modeling, IIT Roorkee, Dr. Ameya Nayak									
	http://www.digimat.in/nptel/courses/video/111107113/L01.html									

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Sen	Semester: I							
Code: MEDE104B								
Evaluation Scheme (Marks)								
V OR	PR	Total						
-	-	100						
I	•							
iples, Intro	oduction	n to Material						
ction and	wear m	echanisms in						
ituation								
atic step b	earings.							
gas lubric	cants, in	cluding their						
on tribolog	ical per	formance.						
fy strategie	es for pr	revention and						
nce of Tri	bology.							
Friction: Genesis of friction, friction in contacting rough surfaces, sliding and rolling friction,								
Wear: Wear and wear types. Mechanisms of wear - Adhesive, abrasive								
fatigue, fretting, etc., Wear of metals and non-metals. Wear models - asperity contact, constant								
and variable wear rate, geometrical influence in wear models, wear damage.								
ation, Pro	perties of	of lubricants,						
: anti-wea	ar, extre	me pressure,						
lubricants	s, Differ	ent lubricant						
	Cool Scheme (i V OR iples, Intra- iples, Intra- iples, Intra- iction and ituation atic step b gas lubrid on tribolog fy strategid unce of Tri es, sliding e, abrasive lels - asper ar damage. cation, Pro s: anti-weat lubricants	Code: MEI Scheme (Marks) V OR PR - - - iples, Introduction - - iples, Introduction - - iction and wear main - - introduction -						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Hydrostatic and Hydrodynamics I ubrigation.								
	Hydrostatic and Hydrodynamics Lubrication:								
2	hydrostatic step bearings, Optimum design for hydrostatic step bearings, Idealized Hydrodynamic								
5.	nydrostatic step bearings, Optimum design for nydrostatic step bearings, idealized Hydrodynamic								
	bearings. Finite Bearings, On Flow and Thermal equinorium, Bearing Design, Squeeze Finit								
	bearings, Hydrodynamic Instability. Externally pressurized On Bearings.								
	Elastonydrodynamics and Gas Lubrication:								
	Elastonydrodynamic Lubrication, Surface Roughness Effect on Hydrodynamic Bearings and Ball								
4.	Bearings, Roller Bearings.								
	Gas Lubrication: Introductions, Types of gas lubricants, Types of gas lubricants, Analysis of gas								
	flow in lubrication systems, Applications of gas lubrication in industrial machinery, Merits and								
	Demerits, Applications.								
	Surface Engineering for Tribological Applications:								
	Surface modification techniques: coatings, plating, and surface texturing, Surface characterization								
5.	methods: profilometry, microscopy, and surface roughness measurement, Iribological								
	performance of engineered surfaces: wear resistance, friction reduction, Applications of surface								
	engineering in industry: automotive, aerospace, manufacturing, and energy sectors								
	Tribology in Design Engineering:								
	Integration of tribological principles in product design: materials selection, surface treatment, and								
6.	lubrication strategies, Case studies on tribological failures in engineering systems: bearings, gears,								
	seals, and sliding interfaces, Design optimization for improved tribological performance:								
	reliability, durability, and energy efficiency considerations, Emerging trends and future directions								
	in industrial tribology: Nano tribology, bio-inspired lubrication.								
Text I	Books:								
1.	G. W. Stachowiak and A. W. Batchelor, "Engineering Tribology".								
2.	B. C. Majumdar, "Introduction to Tribology of Bearings", A. H. Wheeler & Co. Ltd., New Delhi,								
	1999.								
3.	Ian M. Hutchings, "Tribology: Friction and Wear of Engineering Materials".								
Refer	ence Books:								
1.	Bhushan, B., "Introduction to Tribology." John Wiley & Sons.								
2.	Jones, A. R., "Tribology: Friction, Wear, and Lubrication." CRC Press.								
3.	Pinkus, O. and Sternlicht, B., "Theory of Hydrodynamic Lubrication." McGraw-Hill Book Co.								
	Inc., New York.								
4.	Heshmat, H., "Gas Lubricated Bearings: Fundamentals, Design, Modeling and Applications."								
	Springer.								
E-Res	ources:								
1.	MIT OpenCourseWare: Introduction to Tribology								
_	Lecture Notes Tribology Mechanical Engineering MIT OpenCourseWare								
2.	Coursera: Iribology and Mechanical Components								
J. 3.	INFIEL. FUNDAMENTALS OF THOOLOGY INFIEL. INECHAMICAL ENGINEERING - THOOLOGY								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Computer – Data Science) Semester							Ι				
Course:	Open Elective	– I (Cloud C	Computing f	or Data Science) Code: CODS105					DS105		
ſ	Ceaching Sche	me (hrs/wee	ek)	Evaluation Scheme (Marks)							
Lecture	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prerequ	erequisites:										
1. B	1. Basic understanding of data science concepts.										
2. F	Familiarity with programming languages like Python or Java.										
3. K	Knowledge of database management systems.										
4. B	asic understan	ding of distr	ibuted comp	outing.							
Course (Objectives:										
1. T	o understand the	he fundamen	tals of clou	d computii	ng and its	relevanc	ce to data	science.			
2. T	o gain knowle	dge on vario	us cloud ser	vice mode	ls and de	ploymen	t strategi	es.			
3. T	o explore clou	d storage and	d computing	g solutions	for data-i	intensive	applicat	ions.			
4. T	o learn about t	he architectu	ire and impl	ementation	n of big d	ata solut	ions on c	loud plat	forms.		
5. 1	o develop skill	ls for deploy	ing, managi	ng, and sca	aling data	science	applicati	ons in th	e cloud.		
6. 1	o evaluate the	security, priv	vacy, and co	ompliance	issues in	cloud en	vironmei	nts.			
Course (Jutcomes: At	the end of th	e course, th	e student v	vill be ab	le to -					
	Understand th	he basic cond	cepts and ev	rolution of	cloud con	mputing.					
CO2	Identify key o	cloud service	es and their	application	is in data	science.					
CO3	Evaluate vari	ous cloud sto	brage solution	$\frac{1}{1}$ ons for dat	a science	•					
CO4	Implement bi	g data analy	tics using cl	oud servic	es.	•	1				
	Implement se	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	ractices for	cloud-bas	ed data so	ence ap	plication	.s.			
CO6	Explore cloud	a monitoring	and manag	ement too	lS.						
Course C	contents:			Derer	- 4 •						
Unit	In the decation	to Cloud C		Descri	ption						
	Definition on	d characteria	omputing:	d computi	ng Uistor	ry and av	olution	of aloud a	omputing		
1.	Definition and characteristics of cloud computing, History and evolution of cloud computing, Cloud service models: Jass Pass Sass Cloud doployment models: Dublic Drivets Unbrid										
	and Community										
		nty.									
	Cloud Infras	structure an	d Services:								
2	Cloud infrast	tructure com	ponents: da	ata centers	, network	ks, storag	ge, Virtu	alization:	concepts,		
2.	types, hyperv	types, hypervisors, Cloud services: compute, storage, networking, database services, Cloud									
service providers: AWS, Azure, Google Cloud.											
	Cloud Stora	ge Solutions	•								
2	Cloud storag	ge types: ob	ject storage	e, block st	torage, fi	le storag	ge, Clou	d storage	e services:		
э.	Amazon S3,	Azure Blob	Storage, G	oogle Clou	id Storag	e, Data l	ifecycle	managen	nent in the		
	cloud, Case s	tudies and b	est practices	tor cloud	storage.						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Cloud Computing for Big Data:						
4	Introduction to big data and cloud computing, Big data processing frameworks: Hadoop,						
4.	Spark, Cloud-based big data services: Amazon EMR, Google Dataproc, Azure HDInsight,						
	Data ingestion, processing, and visualization in the cloud						
	Cloud Security and Privacy:						
5	Security challenges in cloud computing, Cloud security mechanisms: encryption, identity						
5.	management, access control, Data privacy and compliance: GDPR, HIPAA, Best practices for						
	securing cloud applications						
	Managing and Scaling Cloud Applications:						
6	Cloud application lifecycle management, Monitoring and management tools: CloudWatch,						
6.	Azure Monitor, Google Stackdriver, Auto-scaling and load balancing, Cost management and						
	optimization in the cloud						
Text B	ooks:						
1.	Thomas Erl, Zaigham Mahmood, and Ricardo Puttini, "Cloud Computing: Concepts, Technology						
	& Architecture", Prentice Hall.						
2.	Xiaolin Li, Jianxin (Jason) Wu, and Adam Li, "Cloud Computing for Data-Intensive						
	Applications", Springer.						
Refere	nce Books:						
1.	Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi, "Mastering Cloud Computing:						
	Foundations and Applications Programming", McGraw-Hill Education.						
2.	Arshdeep Bahga and Vijay Madisetti, "Cloud Computing: A Hands-On Approach", VPT.						
3.	Nir Kshetri, "Big Data and Cloud Computing for Development: Lessons from Key Industries and						
	Economies in the Global South", Springer.						
E-Reso	ources:						
1.	AWS Training and Certification: [AWS Training] https://aws.amazon.com/training/						
2.	Microsoft Learn: [Azure Training] https://learn.microsoft.com/en-us/training/						
3.	Google Cloud Training: [Google Cloud raining] https://cloud.google.com/training						
4.	Coursera: Cloud Computing Specializations and Courses [Coursera]						
	https://www.coursera.org/browse/information-technology/cloud-computing						
5.	edX: Cloud Computing Courses [edX] https://www.edx.org/learn/cloud-computing						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Electrical – Power Systems) Semester: I								Ι			
Course:	Open Elective	– I (Industri	al Automati	ion)			С	ode: EEI	PS105		
Г	eaching Sche	me (hrs/wee	ek)	Evaluation Scheme (Marks)							
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prerequi	sites:										
Knowled	ge of Engineer	ring fundame	entals, math	ematics, co	ontrol sys	tems, me	echanical	and man	ufacturing		
process.											
Course (Objectives:										
1. T	o emphasize th	e role of aut	omation tec	hniques in	manufac	turing ar	nd proces	s industr	ies.		
2. T	o impart the ro	le of PLC in	industry au	tomation.							
3. T	o familiarize w	ith the vario	us control t	echniques	used in p	rocess at	itomation	1.			
4. Te	o design autom	nation system	ns for manu	facturing a	ind proces	ss indust	ries.				
Course (Dutcomes: At	the end of th	e course, th	e student v	will be ab	le to -					
CO1	Apply automa	ation princip	les and stra	tegies in m	anufactu	ring syste	ems.				
CO2	Design and an	nalyze Detro	it-type auto	mated flow	v lines, tr	ansfer m	echanism	ns, and bu	uffer		
	storage for en	hanced mac	hining operation	ations.							
CO3	Evaluate and	design mate	rial handlin	g systems	with prod	luct ident	tification	technolo	gies.		
CO4	Apply control	l technologie	es in automa	ation, inclu	ding indu	istrial co	ntrol syst	tems, SC	ADA, and		
	PLCs.										
CO5	Design and analyze automated manufacturing systems, including flexible and cellular										
00(manufacturin	g.				. 1	. 1.		• • •		
C06	Integrate DD	C, DCS, SC	ADA, and P	LCs for pi	ocess saf	ety and c	control in	process	industries.		
Course C	contents:			D. '							
Unit	T. 4 1 4*	4	· · · »	Descri	ption	•					
	Introduction	to automat	ion in Man		g Industi	ries:		D			
	Automation in Production System, Principles and Strategies of Automation, Basic Elements of										
1.	an Automated System, Advanced Automation Functions, Levels of Automations. Production										
	Economics: Methods of Evaluating Investment Alternatives, Costs in Manufacturing, Break										
	Even Analysis, Unit cost of production, Cost of Manufacturing Lead time and Work-in-										
	Detroit-Tvn4	Automatio	n:								
	Automated F	low lines M	ethods of W	ork nart T	ransport '	Transfer	Mechani	sm. Buff	er Storage		
	Control Fund	ctions and	Automation	for Mac	chining (Deration	ns. Desig	on and H	Fabrication		
2.	Consideration	ns. Analysis	of Autom	ated Flow	Lines: (General	Terminol	logy and	Analysis.		
	Analysis of '	Transfer Lin	es Without	Storage.	Partial A	utomatic	on, Comr	outer Sin	nulation of		
	Automated F	low Lines.		υ,			· 1				
L]											

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Material handling and identification technologies:
	The material handling function, Types of Material Handling Equipment, Analysis for Material
2	Handling Systems, Design of the System, Conveyor Systems, Automated Guided Vehicle
5.	Systems. Automated Storage Systems: Storage System Performance, Automated
	Storage/Retrieval Systems, Work-in-process Storage, Interfacing Handling and Storage with
	Manufacturing. Product identification system: Barcode, RFID etc.
	Control technologies in automation:
	Industrial Control Systems, Process Industries Verses Discrete Manufacturing Industries,
4.	Continuous Verses Discrete Control, Computer Process Control and its Forms. Computer
	Automation System: I AN Analog & Digital I/O Modules and SCADA System & RTU
	Automation System: LAN, Analog & Digital 1/0 Modules, and SCADA System & RTC.
	Components, Classification and overview of manufacturing systems, Cellular manufacturing,
5.	Flexible manufacturing system (FMS), FMS and its planning and implementation, Automated
	assembly system – design and types of automated assembly systems, Analysis of multi station
	and single station assembly machine.
	Automation in Process Industries:
	Introduction to computer based industrial automation- Direct Digital Control (DDC),
	Distributed Control System (DCS) and supervisory control and data acquisition (SCADA)
	based architectures. SCADA for process industries includes understanding of RTUs, Pumping
6	stations, Evacuation processes, Mass Flow Meters and other flow meters, Leak-flow studies of
0.	pipelines, Transport Automation, Programmable Logic Controller (PLC)- Block diagram of
	PLC, Programming languages of PLC, Basic instruction sets, Design of alarm and interlocks,
	Networking of PLC, Overview of safety of PLC with case studies. Process Safety Automation:
	Levels of process safety through use of PLCs, Integrating Process safety PLC and DCS,
	Application of international standards in process safety control.
Text B	ooks:
1.	M. P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", 5th
	Edition, Pearson Education, 2009.
2.	John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and
2	Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003.
3.	Krishna Kant, "Computer-Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi,
1	2011. Erents D. Detruzelle, "Dreenementals Legis Controllers" 5th Edition, McCrew Hill, New York
4. Defense	Frank D. Petruzena, Programmable Logic Controllers, 5th Edition, McGraw-Hill, New York.
Kelere 1	Curtis D. Johnson "Process Control Instrumentation Technology" 8th Edition Pearson New
1.	International 2013
2	Lukas M. P. "Distributed Control Systems" Van Nostrand Reinhold Co. New York 1986
3	N. Viswanandham, Y. Narahari, "Performance Modeling of Automated Manufacturing Systems"
5.	1st Edition. 2009.
4.	Carlos Smith and Corripio, "Principles and Practice of Automatic Process Control". 3rd Edition.
	John Wiley & Sons, 2006.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (E&TC – IoT and Sensor Systems)							Se	Semester: I			
Course:	Open Elective -	- I (Internet	of Things))	Code: ETIS105						
Т	eaching Schem	ne (hrs/weel	x)	Evaluation Scheme (Marks)							
Lectur	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prerequ	isites:										
1. B	Basics of sensors and hardware components.										
2. B	asic networking	g concepts.									
3. Knowledge of Microcontroller and embedded systems.											
Course (Objectives:										
To provi	ide students wi	ith a comp	rehensive	understan	ding of se	ensor and	actuato	r technolo	ogies, IoT		
architect	ure, communica	tion protoc	ols, and in	terfacing	techniques	, alongsio	de their a	pplication	is in smart		
environn	nents, industrial	systems, an	d healthca	re.		•					
Course (Jutcomes: At th	he end of th	e course, tl	he student	will be ab	le to -					
CO1	Comprehend a	ind analyze	concepts o	f sensors,	actuators,	IoT and I	loE.				
CO2	Interpret IoT A	Architecture	Design As	spects.							
CO3	Comprehend the	he operation	n of IoT pr	otocols.							
CO4	Describe vario	ous IoT boar	ds, interfac	cing, and p	programmi	ng for Io	Т.				
CO5	Illustrate the te	echnologies	, Catalysts,	, and precu	ursors of II	oT using	suitable	use cases.			
CO6	Provide suitab	le solution f	or domain	specific a	pplication	s of IoT.					
Course (Contents:										
Unit				Desc	ription						
	Sensors, Actuators, IoT & IoE:										
	Definitions, Types of sensors, Types of Actuators, Example and Working, Networking Basics,										
1	RFID Principals and components, Wireless Sensor Networks, Definition, and characteristics of										
	an IoT, Physical Design of an IoT, Logical design of IoT, Communication Models,										
	Communication API's, What is the IoE? Difference between IoT and IoE, Pillars of the IoE,										
	Connecting the	e Unconnec	ted, Transi	tioning to	the IoE, B	ringing I	t All Tog	ether.			
	IoT Architecture Design Aspects:										
	IoT-An Architectural Overview, building architecture, Main design principles and needed										
2	capabilities, A	n lo1 archi	tecture out	line, stand	ards cons	ideration	s. M2M a	and Io1 1	echnology		
	Fundamentals-	- Devices a	nd gatewa	lys, Local	and wide	area net	working,	Data ma	nagement,		
	Business proce	esses in lo I,	Everythin	g as a Serv	lce (XaaS), M2M a	nd IoT A	nalytics, K	nowledge		
		-									
	101 Protocols					902 15	Winala		7 Warra		
2	PHI/MAC L	ayer (SGPF	witt, II	LEE 802.	II, IEEE	002.15), Iotrycels I	w ireles	s HAK1,	Z wave,		
3	STRCU ND		guee Sillar	CODDI	CADD T	rononort	Layer-IPV	$4, \mathbf{I} \in \{0, 0\}$	LUWFAN,		
	DCCD SCTD	דו פירדע (דו פירדע)	S) Sanci	on Lover	UAKP, I	AD VM	DD AMO	CF, MPI	Cr, UDP,		
	DCCP, SCTP)-(TLS, DTLS) – Session Layer HTTP, CoAP, XMPP, AMQP, MQTT.										

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Interfacing Boards and Programming:
	Introduction to IoT Boards, Interfacing with IoT Boards, IoT deployment for Raspberry Pi
4	/Arduino/Equivalent platform - Reading from Sensors, Communication: Connecting
	microcontroller with mobile devices - communication through Bluetooth, wifi and USB -
	Contiki OS- Cooja Simulator.
	Industrial IoT:
	Introduction, Key IIOT technologies, Catalysts, and precursors of IIoT, Innovation and the IIoT,
	Applications of IIoT Examples: Healthcare, Oil and Gas Industry, Logistics and the Industrial
5	Internet, Retail applications, IoT innovations and design methodologies, Industrial Internet
5	Architecture Framework (IIAF): Control domain, operational domain and application domain,
	Three tier topology,
	Design of low power device network, legacy industrial protocols, Bluetooth, Zigbee IP, Z-wave,
	Wi-Fi backscatter in IIoT design.
	Applications of IoT:
	Smart Environment: Forest Fire Detection, Air Pollution, Smart Cities: Parking, Structural
6	Health, Noise Urban maps, Smart Metering: Smart Grid, Tank level, Photovoltaic Installations,
	Silos Stock Calculation, Health: Fall Detection, Medical Fridges, Sportsmen Care, Patients
.	Surveillance, Ultraviolet Radiation.
List of	f Experiments:
1.	Study of Raspberry-Pi, Beagle board, Arduino, and different operating systems for Raspberry-
	Pl/Beagle board/Arduino. Understanding the process of OS installation on Raspberry- Pl/Beagle
2	Open source prototype pletform Peepberry Di/Reagle beard/Arduine. Simple program digital
۷.	read/write using LED and Switch - Analog read/write using sensor and actuators
3	Interfacing sensors and actuators with $\Delta rduino/R as pherry_ni \$
<u></u> З. Д	Internating sensors and actuators with Arduino/Raspberry-pi.
	Introduction to MOTT/ CoAP and sending sensor data to cloud using Raspberry-Pi/Beagle
5.	board/Arduino.
6.	Get the status of a bulb at a remote place (on the LAN) through web.
7.	Interfacing Arduino to Bluetooth Module.
8.	Communicate between Arduino and Raspberry PI using any wireless medium like ZigBee.
Text H	Books:
1.	Ovidiu Vermesan, Peter Fresiss, "Internet of Things" From research and innovation to market
	Deployment", River Publishers series in Communication, USA.
2.	Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key
	Applications and Protocols", 2 nd Edition, Wiley Publications.
Refere	ence Books:
1.	Dr. Ovidiu Vermesan, Dr. Peter Friess, "Internet of Things: Converging Technologies for Smart
	Environments and Integrated Ecosystems", River Publishers Series in Communication.
2.	Giancarlo Fortino and Pawan Kumar, "Internet of Things: Case Studies", CRC Press.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program	rogram: M. Tech. (Robotics and Automation Engineering)Semester: I											
Course:	Open Elective –	I (Microcont	rollers Arcl	hitecture and Programming) Code: MERA105								
]	Feaching Schem	ne (hrs./week	;)		Evaluat	ion Sche	me (Ma	rks)				
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total			
03	-	-	03	50	50	-	-	-	100			
Prerequi	sites:											
Basics of	Microcontroller	and program	ming.									
Course C)bjectives:											
To provid	le solid foundati	ion on the fu	ndamentals	s of microp	processors	and appl	lications	, interf	acing the			
external	devices to the p	processor acc	ording to	the user re	quirement	s thus, e	nabling	to crea	ate novel			
products	products and solutions for real time problems.											
Course Outcomes: At the end of the course, the student will be able to -												
CO1	O1 Describe architecture and operation of Microcontroller 8051.											
CO2	Foster ability to	o understand	the design	concept of	Microcont	roller.						
CO3	Design various	applications	using its pe	eripherals.								
CO4	Analyze the data transfer information through serial and parallel ports.											
CO5	An in-depth kn	owledge of a	pplying Mi	crocontroll	ers the cor	cepts on	real tin	ne appli	cations.			
Course C	Contents:											
Unit	Description											
	Basics of Micr	ocontroller	and Intel 8	051 archit	ecture:							
1	Introduction to microcontrollers, difference in controller and processor. Architecture of 8051,											
1.	Internal block	diagram, Inte	ernal RAM	organizati	on, SFRS,	pin fund	ctions of 8051, I/O port					
	structure and O	peration, Ext	ernal Mem	ory Interfa	ce.							
	Programming	model of 80	51:									
	Instruction classification, Instruction set, Addressing Modes: Immediate, register, direct,											
2.	indirect and relative, assembler directives (ORG, END), features with examples, I/O Bit and											
	Byte programming using assembly language for LED and seven segment display (SSD)											
	interfacing. Intr	roduction to 8	3051 progra	amming in	C.							
	Timer /Counte	er, Interrupt	s:									
	Timer / counter	r: TMOD, TO	CON, SCON	N, SBUF, P	CON Regi	isters, Ti	mer mo	des,				
3.	programming f	or time delay	using mod	le 1 and mo	ode 2.			-				
	Interrupts: Int	roduction to	interrupt, li	nterrupt typ	bes and the	ir vector	address	es, Inte	rrupt			
	enable register	and interrupt	priority reg	gister (IE, I	P)							
	Interfacing, Se	erial Commu	inication a	nd RTOS:	a . 1 a				,			
	Programming	of serial poi	t without	interrupt,	Serial Co	mmunica	$\frac{1}{100}$	ynchro	nous and			
4	asynchronous s	erial commu	nication, Us	se of timer	to select ba	ud rate fo	or serial	comm	inication,			
·	interfacing: AL	DC, DAC, LC	D, stepper	motor.								
	KIUS:	Architacture	oftermal	took achod	ulor							
		, Architecture	e of kernel,	task sched								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

References:

- 1. Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming & Applications", Penram International.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill Education, 2008.
- 3. K. Uma Rao and Andhe Pallavi, "The 8051 Microcontroller Architecture, Programming and Applications", Pearson Publications.
- 4. Mazidi and McKinlay, "8051 Microcontroller and Embedded Systems Using Assembly and C", Pearson Publications.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering) Semester: I										
Cours	se: Numerical Sin	nulation Lab)				Cod	e: MEDE	106	
	Teaching Schen	ne (hrs/wee	k)		Evalı	uation Scl	heme (Ma	rks)		
Lectu	ure Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
-	02	-	01	-	-	25	-	25	50	
Prere	quisites:						•			
System	n of linear and no	onlinear, Par	tial differe	entiation, H	Problem so	lving and	programn	ning.		
Cours	se Objectives:									
1.	1. To understand applications of systems of equations and solve mechanical engineering									
applications.										
2.	To apply differ	rential equa	tions to se	olve the a	pplication	s in the c	domain of	fluid me	chanics,	
	structural etc.									
3.	To learn numeri	cal integrat	ion technic	ques for en	gineering	applicatio	ns.			
Cours	se Outcomes: At	the end of t	he course,	the studen	t will be a	ble to -				
CO1	Apply built-in f	unctions in I	MATLAB/	SCILAB	to solve m	umerical p	oroblems			
CO2	Develop code fo	or solving pi	oblems on	different	types of m	athematic	al models	and equat	ions	
00-	(ODE, PDE, Lir	lear and nor	nlinear equ	ations).						
CO3	Solve simulation	n problems	encountere	ed in mech	anical desi	ign, vibrat	ion analys	is, and CA	ND	
CO4	Model a system	and Develo	p a simula	tion code	for a mini-	project				
List of	f Experiments:									
1.	Heat conduction	analysis of	2D plate	using ANS	SYS fluent	•				
2.	Flow and heat the	ansfer anal	ysis of dev	eloping fl	ow in a pip	be using A	NSYS flu	ent.		
3.	Solution of Ord	inary Equat	ion and Sy	stem using	g MATLA	В.				
4.	Simulation of V	ibration in 1	Mechanica	ll System ι	using MAT	LAB.				
5.	Simulation of sp	oring mass s	system usir	ng MATL	AB.					
6.	Simulation of C	AM and Fo	llower med	chanism u	sing MAT	LAB.		C		
7.	Introduction to	OpenFOA	M and flu	uid flow	and heat	transfer a	inalysis o	f a syster	n using	
	OpenFOAM.									
1 ext I	BOOKS:		1 NT	-1 M-411	:41- N.C.A					
1.	Steven C. Chap	ra, "Applied	1 Numeric	al Method	s with MA	AILAB IO	or Enginee	rs and Sci	entists,	
E D	Tata McGraw-F	IIII Publishi	ng Co. Lto	1.						
E-Kes	sources:	ом Mail-1. Г		n a fa Nt			. h., D., . f	Nilset V.		
1.	Modros https://s	on iviatiad F	rogrammi	ing for inui	merical Co	mputatior	i dy Prof.	iniket Kais	sare, III	
2	NDTEL course	on Compute	s.npter.ac.	id Dynami	geus/previ	orogram h	u Drof C	Chalzeahar	+**	
۷.	https://pptol.co		12105045		US, 111 MI	aragpur b	y F101. S .	Спактарог	ty,	
1. E-Res 1. 2.	Tata McGraw-H sources: NPTEL course of Madras https://o	Iill Publishi on Matlab F onlinecourse on Computa	Programmi es.nptel.ac.	ng for Nur in/noc20_ id Dynami	merical Co ge05/previ cs, IIT Kh	omputation iew aragpur by	n by Prof. y Prof. S.	Niket Kais	sare, IIT	

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progr	am: M. Tech. (M	Se	Semester: I								
Cours	se: Design Engine	eering Lab-	[Code: MEDE1							
	Teaching Schen	ne (hrs/wee	ek)		Eval	uation Sc	heme (M	larks)			
Lect	ure Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
-	02	-	01	_	-	25	25	_	50		
Prere	quisites:										
Basic	knowledge of So	lid Mechani	cs, Heat T	ransfer an	d Finite E	Element Ar	nalysis (I	FEA)			
Cours	se Objectives:										
1.	To solve 1D, 2I) & 3D stru	ctural prob	lems usin	g ANSYS	S software.					
2.	2. To evaluate steady state & transient thermal concepts.										
3.	3. To analyze coupled field analysis problem.										
4.	To compare sof	tware & exp	perimental	results ob	tained in	case study					
Cours	se Outcomes: At	the end of t	he course,	the studen	t will be	able to -					
COI	Understand the	basic conc	epts of co	mputer ai	ded engi	neering (C	CAE) an	d characte	eristics of		
COI	various element	s required f	or analysis	•							
CO2	Nurture students	s about the o	discretizati	on process	s and crite	eria for qua	ality mes	h.			
CO3	Understand the a	approaches	of finite ele	ement metl	nod (FEM	I) and to fi	nd displa	cement an	d stresses		
05	over the body.										
CO4	Develop the knowledge and skills needed to effectively evaluate the results using finite element										
0.04	analysis (FEA).										
CO5	Apply computational technique to solve complex solid mechanics problems and its loading										
0.05	states.										
CO6	Study the applic	ations of C.	AE in the v	various do	mains of	the mecha	nical eng	ineering.			
List o	f Experiments:										
Exp.	No. 1 & 4 is com	pulsory and	d perform	any 1 of	remainin	g:					
1.	Distributed load	l analysis of	Chassis fr	ame.							
2.	Analysis of plar	ne stress & j	plane strair	n problem.							
3.	Perform harmor	nic and mod	lal analysis	of cantile	ver beam	for different	ent cross	section.			
4.	Performance or	n Buckling	analysis c	of beam b	y use of	Eigen va	lue and	nonlinear	buckling		
	analysis.										
Refer	ence Books:										
1.	Fagan, "Finite E	Element Ana	alysis – Th	eory & Pr	actice", L	ongman S	cientific	& Techni	cal.		
2.	J. N. Reddy, "A	n Introducti	on to Finit	e Element	Analysis	s", Tata Mo	cGraw H	ill Publica	ation Co.		
3.	Nitin Ghokle, "I	Practical Fin	nite Eleme	nt Analysi	s".						
E-Res	sources:										
1.	Experimental St	tress Analys	sis by Prof.	K. Rames	sh, IIT M	adras					
	Experimental St	tress Analys	sis - Course	e (nptel.ac	.in)						
2.	Thermal Engine	ering: Basi	c and Appl	ied, by Pr	of. Pranal	b K. Mond	lal, IIT G	luwahati			
	Thermal Engine	ering: Basi	c and Appl	ied - Cour	se (nptel.	.ac.in)					

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progr	rogram: M. Tech. (Mechanical–Design Engineering) Semester: I											
Cours	se: So	eminar				Code: MEDE108						
	Tea	ching Sche	eme (hrs/w	eek)	Evaluation Scheme (Marks)							
Lectu	ire	Practical	Tutorial	Credit	CIE	ЕТЕ	TW	OR	PR	Total		
_		02	-	01	-	-	25	25	-	50		
Prere	quisi	ites:								<u> </u>		
Studer	nts s	hould have	e the know	vledge of b	asic and	advance e	ngineeri	ng topics,	Industr	y related		
advan	ceme	ent and curr	ent practice	s used.			-					
Cours	se Ol	ojectives:										
To ex	To explore emerging technologies, enhance research and communication skills, practice presentations											
and re	eport	writing, ev	aluate engi	neering prot	olems, disc	cuss societ	al impac	ts, and pro	ovide coi	nstructive		
feedba	ack.											
Cours	se Oi	itcomes: A	t the end of	the course,	the student	will be ab	le to -					
CO1	Ana	alyze currer	nt topics in	Design Eng	gineering/e	merging to	echnolog	ies by per	forming	literature		
COI	surv	veys.										
CO2	Cor	nduct litera	ture review	vs, evaluate	models, d	raw concl	usions, a	and gain	skills in	literature		
	surv	veys and pro	esentations.									
CO3	Wri	ite compreh	ensive repo	orts and aim t	to publish	at least one	e review]	paper.				
Cours	se Co	ontents:										
Sr. No	D.				Desc	ription						
1		Under the	supervision	of a designation	ated guide,	each stude	ent must	study curr	ent subje	cts in the		
		field and re	elated to De	sign Engine	ering also o	connected	to the Inc	dustry.				
2		Students m	ay select a	mechanical s	system desi	ign/Materia	al handlii	ng//Other	Design T	echnique		
2		that takes 1	nto account	current tren	ds and the	significan	ce of the	topic to so	toobniqu	lustry.		
5		insightful a	conclusion a	re anticipate	d from the	seminar r	, using a esearch	specific	techniqu	e and an		
4		The semin	ar report	must be tur	ned in or	der to con	nply wi	th the su	bject's te	rm work		
		requiremen	nts.						-			
5		As a resear	ch consequ	ence of the se	eminar, at l	east one re	view pap	per publica	tion is an	ticipated.		
Activi	ities	to be condu	ucted in Se	mester:								
1.	We	ekly meetir	ng report su	bmission.								
2.	Rev	view-1 cond	luction at m	id of semest	er, at interi	nal level - I	Literature	e review a	nd metho	dology of		
	the	selected top	pic, Mathen	natical mode	l/advancer	nent in tec	hnology	and findin	gs and its	s analysis		
3.	Rev	view-2 cond	luction at th	ne end of ser	nester, at e	external lev	vel – Cor	mprehensi	ve preser	tation on		
	the	selected top	pic in extern	nal examiner	, guide and	l departme	ntal repr	esentative	s panel			
4.	Rev	view-3 com	prehensive	spiral report	checking	and submis	ssion of a	at least one	e review p	oaper.		
5.	Ser	ninar report	writing an	d submissior	n to departi	ment.						
E-Res	sourc	es:										
1.	httr	os://onlineco	ourses.sway	am2.ac.in/n	tr20_ed30/	preview						
2.	http	os://onlineco	ourses.npte	.ac.in/noc22	_hs05	•						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program	am: M. Tech. (Design Engineering) Semester: I										
Course:	Audit Course –	- I: Technical	Paper writ	ting			Co	de: MED)E109		
ſ	Teaching Scher	me (hrs/wee	k)	Evaluation Scheme dit CIE ETE TW OR PR							
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
01	-	-	-	-	-	-	-	-	-		
Prerequi	sites:										
Basic Pro	oficiency in En	nglish, Funda	mental Res	search Ski	lls, Introdu	ctory Un	derstandi	ng of Ac	cademic		
Writing,	Basic Compute	er Literacy, l	nterest in I	Research a	nd Writing	, Analyti	cal and C	Critical T	hinking		
Skills											
Course Objectives:											
1. T	o Equip Studen	nts with Tech	nical Writi	ng Skills.							
2. T	o Instill Ethical	l Research Pi	actices.								
3. T	o Enhance Gra	mmar and W	riting Profi	ciency.							
4. T	o Foster Resear	rch Skills and	l Knowledg	ge.							
5. T	o Educate on P	lagiarism and	d Authorsh	ip.							
6. T	o Develop Cita	tion and Ref	erencing Co	ompetence	•						
Course (Dutcomes: At t	the end of the	e course, the	e student v	vill be able	to -					
CO1	To know the	Technical W	riting Fund	amentals							
CO2	Understanding of Research Ethics and Objectivity										
CO3	Proficiency in Research Writing										
CO4	Development	of Research	Skills								
CO5	Ability to Ave	oid Plagiarisı	n								
CO6	Expertise in C	Citation and H	Referencing	r							
Course (Contents:										
Sr. No.				Descri	ption						
1	Introduction to	o Ethics in R	esearch, Fi	ve Principl	es of Ethic	s, Four Co	odes of E	thics, Dis	scussion		
1.	of Case Studie	es									
2	Difference be	etween Tech	nical and	Literary S	Style, Grar	nmar, Co	ommon I	Errors, S	entence		
2.	Formation, Te	echnical Voc	abulary								
3	The different	types of Res	earch, Purp	ose and na	ature of res	earch, sel	ection an	d formul	ation of		
5.	a research pro	blem, introd	uction to re	search wri	ting						
	Conference at	bstracts, prop	osals, proj	ects, resea	rch reports	, presenta	tions, dif	ferent sty	yles and		
4.	different type	es of manus	cripts, diffe	erent way	s of appro	aching th	nesis/diss	ertation	writing,		
	Formal Letter	s and Emails									
5.	Plagiarism, St	trategies to A	void Plagia	arism, Aut	horship and	l copyrigl	nt in the I	Digital A	ge		
6.	Citation styles	s and use, Re	ferences, F	ootnotes, l	Indexing, a	nd Biblio	graphy				
Reference	e Books:										
1. C	lyde Parker D	avis and De	etmar Strau	ub, "Writi	ng the Do	ctoral Di	ssertation	n: A Sys	stematic		
A	pproach," Gorc	don Barrons I	Educationa	l Series, 20	008.						
2. G	érard Genette a	and Jane Lew	vis, "Narrati	ive Discou	rse: An Es	say in Me	ethod," Co	ornell Un	iversity		

CEPA 3.44 MAAC @

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

Press, 1983.

- 3. J. Anderson, B.H. Durston, and M. Poole, "Thesis and Assignment Writing," Wiley Eastern Limited, New Delhi, 1970.
- 4. Sidney Greenbaum, "The Oxford English Grammar," Oxford University Press, Oxford, 1996.
- 5. Wayne C. Booth and Gregory Colomb, "The Craft of Research," University of Chicago Press, 2008

E-Resources:

- Online course on English for Research Paper Writing, by Dr. Shoba. K. N., National Institute of Technical Teachers Training And Research, Chennai
 - https://onlinecourses.swayam2.ac.in/ntr24_ed15/preview
- 2. Coursera course on Introduction to Technical Writing https://www.coursera.org/learn/technical-writing-introduction

Zeal Education Society's

ZEAL COLLEGE OF ENGINEERING & RESEARCH, PUNE – 41

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS SEMESTER - II

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	Program: M. Tech. (Mechanical–Design Engineering)Semester: II										
Course	e: Advanced Mec	hanical Vib	rations & A	Acoustics		Cod	Code: MEDE201				
-	Teaching Schem	ne (hrs/wee	k)		Evalua	ation Sch	neme (Ma	arks)			
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
04	-	-	04	50	50	-	-	-	100		
Prereq	uisites:	I				11		1			
Engine	ering Mechanics,	Mechanics	of Solid, E	Engineering	Mathema	tics, and	Dynamic	es of Mac	hinery.		
Course	e Objectives:										
1.	To analyze and a	pply vibrati	on principl	es to predic	t response	s in vario	ous excita	tion cond	litions for		
	modeling physica	al systems.									
2.	To learn acoustic	e terms, mea	surements,	, and design	n principle:	s for appl	lying kno	wledge e	ffectively		
	in acoustic enviro	onments.									
Course	Course Outcomes: At the end of the course, the student will be able to -										
CO1	Formulate and I	Evaluate MI	DOF mech	anical vibr	ation prob	lems, the	en utilize	the unde	rstanding		
cor	to design the system effectively.										
CO2	Develop mathematical models for transient vibrations and assess their influence on system										
design for optimal performance and reliability.											
CO3	Utilize vibration	n measureme	ent instrum	ents for ana	alyzing sys	tem vibr	ations and	d develop	effective		
strategies for controlling vibration to optimize system performance.											
CO4	Understand the	random vil	oration and	d analyze t	he vibration	on respo	nse of si	ngle-deg	ree linear		
	systems to predi	ict and optim	nize systen	n behavior.							
CO5	Analyze self-ex	cited and no	on-linear vi	ibrations, ic	lentifying	causes of	f instabili	ity, and e	ffectively		
	apply analysis te	echniques fo	or optimal	system per	formance.						
CO6	Apply principles	s of acoustic	es to ensure	e complian	ce with not	ise regula	ations.				
Course	e Contents:										
Unit				Descrip	otion						
	Multi-Degree F	reedom Sy	stem:								
	Free vibration e	equation of	motion, in	fluence co	efficient i)	stiffnes	s coeffici	ent (ii) I	Iexibility		
	coefficient gene	ralized coor	dinates, co	oordinate co	ouplings, I	Lagrange	's equation	ons matri	x method		
1.	Eigenvalues Eig	genvector pr	oblems, m	odal analys	sis, forced	vibratior	ns of the	un-damp	ed system		
	and modal analy	/sis.									
	Numerical meth	nods - (i) Ra	ayleigh's N	Method, (ii)	Rayleigh	-Ritz Me	ethod (iii)) Holzer'	s Method		
	(iv) Methods of	Matrix itera	ations								
	Transient vibra	ations:									
2.	Response to an	impulsive i	nput, Resp	onse to ste	p input, R	esponse	to a pulse	e input-re	ctangular		
	pulse and half si	inusoidal pu	lse								
	Vibration Meas	surement:									
3.	FFT analyzer, vi	ibration exc	iters, signa	l analysis,	time doma	in and fr	equency	domain a	nalysis of		
	signals, experim	ental modal	analysis, 1	machine co	nditioning	and mor	itoring, a	nd fault	diagnosis.		

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Vibration Control:
	Balancing of rotating machine, in-situ balancing of rotors, control of natural frequency, vibration
	isolation and vibration absorbers, Passive, active, and semi-active control, free layer and
	constrained layer damping.
	Random Vibrations:
4.	Auto and cross-correlation function, spectral density, response of linear systems, and analysis
	of narrow-band systems
	Self-Excited and Non-linear Vibrations:
	A criterion for stability, cause of instability, and analysis of special cases of self-excited
5.	vibrations.: Free vibrations with non-linear elasticity and damping, relaxation oscillations, sub-
	harmonic response, phase-plane plots, perturbation techniques, Duffing's equation, jump
	phenomenon, etc.
	Acoustics:
	Fundamentals of acoustics, Acoustics of Partitions, Enclosures, Barriers and Mufflers
6	Transmission of Sound: changes in media with normal incidence, changes in media with oblique
0.	incidence, sound transmission through a wall, transmission loss for walls - stiffness-controlled
	region- mass-controlled region - damping-controlled region, Design of Acoustic Enclosures,
	Barriers, muffler elements. Noise Control Strategies and Applications
Text B	Books:
1.	S. S. Rao, "Mechanical Vibrations", Pearson Education, Delhi.
2.	W. T. Thomson, "Theory of Vibrations with Applications", Pearson Education, Delhi.
3.	Kewal Pujara, "Vibrations and Noise for Engineers", Dhanpat Rai, Assorted Editorial, New Delhi.
4.	Randell Barron, "Industrial Noise Control", Marcel Dekker, CRC Press.
5.	M. L. Munjal, "Noise and Vibration Control", World Scientific Publishing Co. Ltd.
6.	G. K. Groover, "Mechanical Vibrations", Nem Chand & Bros, Roorkee, India.
Refere	ence Books:
1.	Leonard Meirovitch, "Fundamentals of Vibration", McGraw Hill International Edition.
2.	Ashok Kumar Mallik, "Principles of Vibration Control", Affiliated East-West Press, New Delhi.
3.	A. H. Church, "Mechanical Vibrations", John Wiley & Sons Inc.
E-Res	ources:
1.	NPTEL course on Introduction to Mechanical Vibration By Prof. Anil Kumar, IIT Roorkee
	https://onlinecourses.nptel.ac.in/noc22_me76/preview
2.	NPTEL course on Acoustic and Noise Control by Prof. Abijith Sarkar, IIT Madras
	https://archive.nptel.ac.in/noc/courses/noc17/SEM2/noc17-me32/

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program	m: M. Tech. (M	Sem	Semester: II								
Course	: Research Meth	odology and	d Intellect	ual Prope	rty Rights	Cod	Code: MEDE202				
]	Feaching Schem	e (hrs/weel	x)		Evalu	ation Sche	me (Mar	ks)			
Lectur	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
04	-	-	04	50	50	-	-	-	100		
Prereq	uisites:										
Basic U	Understanding of	f Academic	Research	, Critical '	Thinking an	d Analytica	al Skills i	n researc	h, Basic		
Knowle	edge of Statistics	5									
Course Objectives:											
1. To Understanding Research Fundamentals											
2.	2. To Define and Framing Research Problems.										
3.	To Conduct Comp	prehensive L	iterature R	eviews:							
4.	To Design and Im	plementing I	Research								
Course	Outcomes: At t	the end of th	e course,	the studer	nt will be ab	le to -					
CO1	Understand res	earch metho	odology ar	nd its tech	nique of def	fining a reso	earch pro	blem.			
CO2	Apply the conc	cept of the l	iterature 1	review in	research, de	eveloping the	heoretical	and con	ceptual		
	frameworks and writing a review.										
CO3	Explain the various research designs and their characteristics.										
CO4	Apply the art of	f interpretat	ion and w	riting rese	earch reports	5.					
CO5	Analyze the principles and methods of data collection for report writing.										
CO6	Understand the	concept of	intellectu	al propert	y rights, the	procedure	of patent	filing, co	pyright,		
	and Trademark	registration	l .								
Course	Contents:										
Unit				Desc	ription						
	Research Met	hodology:	- 1		25			1 -			
	Introduction, N	Aeaning of	Research,	, Objectives of Research, Motivation in Research, Types of							
1.	Research, Res	search App	proaches,	Significa	nce of Re	esearch, R	esearch	Methods	versus		
	Methodology,	Research a	and Scier	itific Met	hod, Impoi	rtance of 1	Knowing	How R	esearch,		
	Research Proc	ess, Criteria	a of Good	l Research	n, and Prob	lems Enco	untered b	y Resear	chers in		
) h. D.									
2	Defining the F	lem Select	oblem:	Problem	Nacasity	f Dofining	the Dro	hlom To	abriqua		
۷.	Involved in De	fining Probl	am An II	lustration	inecessity c	or Denning	, the Flo	oleni, le	chinque		
	Beviewing the	litoroturo	eni, An n	lustration							
	Importance of t	he literature:	roviowi	racaarah	Bringing	larity and fo	ocus to a t	acaarch n	roblem		
	Improving rese	arch method	lology Br	rescaren	, Dringing Cl the knowled	lanty and it	the recent	cscarch p	Snahling		
3.	approving rese	ing How t	oroviow t	balitaratu	ra corchin	ge base III	ng litoroti	un area, L	ving the		
	contextual find	iligs, now u	bing a the	ne meratu		g ille existi Davalanina		ntual from			
	Writing about t	he literature	ping a uit		Ialliewolk,	Developing	s a conce	piuai IIali	nework,		
				••							

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Posoarah Dosign:
4.	Meaning of Research Design, Need for Research Design, Features of Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. Design of Sample Surveys: Introduction, Sample Design, Sampling and Nonsampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs.
5.	 Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Interpretation and Report Writing Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout.
6.	Intellectual Property Rights: Introduction to IPRs, Basic concepts and need for Intellectual Property – Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO -TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.
Text B	ooks:
1.	Garg, B.L., Karadia, R., Agarwal, F., and Agarwal, U.K., "An Introduction to Research
	Methodology", RBSA Publishers, 2002.
2.	Kothari, C.R., "Research Methodology: Methods and Techniques", Second Edition, New Age
	International Publishers, New Delhi, 2008.
3.	Sinha, S.C. and Dhiman, A.K., "Research Methodology", EssEss Publications, 2nd Volume, 2002.
4.	Gupta, S.P., "Statistical Methods", 37 th Edition (Revised), Sultan Chand and Sons, New Delhi, 2008.
5.	Leon & Leon, "Internet for Everyone", Vikas Publishing House, 2002.
Refere	nce Books:
1.	Wadehra, B.L., "Law Relating to Patents, Trademarks, Copyright Designs and Geographical
	Indications", Universal Law Publishing, 2000.
2.	Bulakh, Dr. P. M., Patki, Dr. P. S., and Chodhary, Dr. A. S., "Research Methodology", Expert
	Trading Corporation, Dahisar West, Mumbai, 2010.
E-Reso	purces:
1.	https://onlinecourses.nptel.ac.in/noc24_ge21
2.	https://onlinecourses.nptel.ac.in/noc22_ge08
3.	http://nptel.ac.in/courses/121106007
4.	Free Course: Research Methodology and IPR from NITTTR Class Central
5.	https://onlinecourses.swayam2.ac.in/cec24_ge02
6.	https://onlinecourses.nptel.ac.in/noc21_hs08

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program:	Program: M. Tech. (Mechanical–Design Engineering)Semester: II										
Course: F	inite Element	Method					Co	de: MED	E203		
Tea	ching Schen	ne (hrs/wee	k)		Evalu	ation Sch	eme (Ma	rks)			
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prerequis	ites:										
Solid Me	chanics, Nur	nerical and	Statistic	al Metho	ds, Engine	eering Ma	athematic	s, Manu	ufacturing		
Processes,	Fluid Mecha	nics, Heat a	nd Mass T	ransfer	-	-			-		
Course O	ojectives:										
1. To	1. To teach the fundamentals of the finite element method with emphasis on the underlying theory										
ass	assumption and modeling issues.										
2. To	make student	s study the	1D, 2D, an	d 3D anal	ysis for dif	ferent field	d problen	ns.			
3. To	provide hand	ds-on exper	ience usin	g finite el	ement sof	tware to n	nodel, an	alyze, a	nd design		
sys	tems of mech	anical engir	neering.								
Course O	utcomes: At t	the end of th	e course, t	he student	will be ab	le to -					
CO1	Apply differ	ent variation	n methods	for derivin	g the stiffn	ess matric	es of bar	and bean	n element.		
CO2	Derive and u	ise 2-D elen	nent stiffne	ess matrice	s and load	vectors fro	om variou	s method	ls to solve		
02	for displace	ments and st	resses.								
CO3	Understand	Understand the Iso-parametric Elements and Formulation of Plane Elasticity Problems.									
COA	Create and solve the governing equations for plates using Kirchoff theory and Mindlin plate										
004	element theo	ory.									
CO5	Evaluate nor	nlinear prob	lems relate	ed to geom	etry, mater	rial, and co	ontact.				
CO6	Solve real-li	fe mechanic	al enginee	ring probl	ems.						
Course Co	ontents:										
Unit				Des	cription						
	One-dimens	sional prob	lems:								
	Finite eleme	ent method	, brief his	story, basi	c steps, a	dvantages	and dis	advantag	ges, weak		
	formulation,	variationa	l methods	of appro	oximation	- Rayleig	gh-Ritz r	nethods,	Galerkin		
	method of W	Veighted Re	siduals.								
1.	Variational	formulation	of 1D ba	ar and bea	m elemen	ts (Euler]	Bernoulli	and Ti	noshenko		
	beam) – go	overning eq	uation, do	main disc	retization,	elemental	l equatio	ns, asse	mbly and		
	element con	nnectivity,	application	n of bour	ndary con	dition, sol	lution of	equation	ons, post-		
	processing o	of the results	. Automat	ic mesh ge	neration te	chniques,	Mesh qu	ality cheo	cks, h & p		
	refinements,	Node Num	bering sch	eme							
	Two Two-d	imensional	isoperime	etric Forn	ulation:						
	Introduction	, types of 2I	D elements	(CST, LS	T, QST, Is	oparametr	ic), shape	e function	ns – linear		
2.	& quadratic	, displacem	ent function	on – criter	ia for the	choice of	the displ	acement	function,		
	polynomial	displacement	nt function	ns, displac	ement fun	ction in t	erms of	nodal pa	arameters,		
	strain-nodal	parameter	relationsh	nip, stress	-strain rel	ationship,	element	stiffnes	s matrix,		

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	convergence of Isoparametric elements, rate of convergence, plane elasticity problems – plane							
	stress, plane strain and axisymmetric problems							
	Isoparametric Formulation and Numerical Integration:							
	Isoparametric formulation of 1D and 2D Elements, Subparametric, Superparametric and							
3.	Isoparameetric Elements, Numerical Integration - Trapezoidal rule, Simpson's 1/3 rule,							
	Newton-Cotes Formula, Gauss Quadrature formula, Gauss Quadrature in two and three							
	dimensions, reduced and selective integration							
	Plate Theories:							
4	Thin and thick plates-Kirchhoff theory, Mindlin plate element, triangular and rectangular,							
4.	conforming and nonconforming elements, degenerated shell elements, shear locking and hour							
	glass phenomenon							
	Non-Linear Analysis:							
5	Introduction to non-linear analysis, formulation for geometrical, material and contact							
5.	nonlinear problems, Nonlinear equation solving procedure - direct iteration, Newton-Raphson							
	method, modified Newton-Raphson method, incremental techniques							
	Linear and Non Linear Analysis:							
	Types of Analysis (Introduction): Linear static analysis, Non-linear analysis, Dynamic							
	analysis, Linear buckling analysis, Thermal analysis, Fatigue analysis, Crash analysis, Noise,							
6.	Vibration and Harshness (NVH) analysis							
	Computer implementation of the finite element method: pre-processing, meshing techniques,							
	processing post processing. Static condensation, Sub modeling and subtracting, Patch test and							
	incompatible element, h and p refinements							
Text B	ooks:							
1.	Seshu, P., "Textbook of Finite Element Analysis", PHI Learning Private Ltd., New Delhi, 2010.							
2.	Chandrupatla, T. R. and Belegundu, A. D., "Introduction to Finite Elements in Engineering",							
	Prentice Hall India.							
3.	Logan, D., "A First Course in the Finite Element Method", Cengage Learning, 2012.							
Refere	nce Books:							
1.	Bathe, K. J., "Finite Element Procedures", Prentice-Hall of India (P) Ltd., New Delhi.							
2.	Gokhale, N. S., Deshpande, S. S., Bedekar, S. V., and Thite, A. N., "Practical Finite Element							
	Analysis", Finite to Infinite, Pune.							
3.	Gupta, S. K., "Numerical Methods for Engineers", New Age International, 1995.							
4.	Cook, R. D., "Finite Element Modeling for Stress Analysis", John Wiley and Sons Inc., 1995.							
E-Reso	ources:							
1.	NPTEL course on Finite Element Method by Prof. Biswanath Banerjee, Prof. Amit Shaw, IIT							
	Kharagpur - https://onlinecourses.nptel.ac.in/noc22_me43/preview							

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	Program: M. Tech. (Mechanical–Design Engineering)Semester: II										
Course	e: Program Electiv	ve – II (Adv	anced Ma	chine Des	ign)	Cod	Code: MEDE204A				
	Teaching Schem	ne (hrs/wee	k)		Evalı	uation Sch	neme (Ma	arks)			
Lectu	ire Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prereq	uisites:										
Knowl	edge of Theory of	f Machinery	, Design o	f Machine	Elements	, and Dyn	amics of	Machine	ry.		
Course	e Objectives:										
1.	To study the fund	damental co	ncepts of f	fatigue and	l its signif	icance in e	engineerii	ng materi	als.		
2.	To study fatigue	strength and	l its implic	cations for	material c	lesign and	durabilit	у.			
3.	3. To explore the effects of superimposed static stress on fatigue life.										
4.	4. To identify surface and Wear Mechanisms.										
5.	To develop solut	ions to optin	nize surfac	ce perforn	nance and	durability	in indust	rial appli	cations.		
Course	e Outcomes: At th	he end of th	e course, t	he student	will be at	ole to -					
CO1	Understand Fati	gue features	5.								
CO2	Design mechani	cal compon	ents under	creep.							
CO3	Select composite	e material a	nd design	mechanica	al compon	ents.					
CO4	Apply theoretica	al knowledg	e about Su	rface Fail	ure by des	igning var	rious strat	egies.			
CO5	Design mechani	cal compon	ents under	fracture.							
C06	Analyze a proce	ess of produ	ction /mer	nber to st	and agains	st applicati	ion hazar	ds and u	ncertainty		
00	using robust des	ign.									
Course	e Contents:										
Unit				Descr	iption						
	Fatigue:										
1	Introduction, Fa	tigue streng	gth, factor	s affectin	g fatigue	behavior,	Influence	e of supe	rimposed		
	static stress, Cur	mulative fat	igue dama	ge, fatigu	e under co	mplex stro	esses, Fat	igue stre	ngth after		
	stresses										
	Creep:										
2.	Introduction, Tr	ue stress, an	d true stre	ngth, mec	hanism of	creep of n	naterial at	t high ten	nperature,		
	Exponential cree	ep law, hype	erbolic sin	e creep lav	w, stress re	elaxation,	bending,	etc.			
	Design for Mat	erials and l	Process:	_							
3.	Introduction, D	esign for l	prittle frac	cture, Des	sign for f	atigue fai	lure, De	sign for	different		
	machining proce	esses, assem	bly & safe	ety, etc.							
	Surface Failure	e:									
4.	Introduction, Fr	iction: Rolli	ng, Effect	of roughr	less, veloc	ity, and lu	brication	on friction	on, Wear:		
	Adhesive, Ab	rasive and	l Corrosi	ive, Lut	orication:	Hydrody	namic,	hydrosta	tic, and		
	elastohydrodyna	umic lubrica	tion								
_	Product / Process Optimization:										
5.	Introduction, Si	gnal to Noi	se Ratios f	tor Static	Problems,	Signal to	Noise R	atios for	Dynamic		
	Problems Optim	ization usin	g Signal to	o Noise R	atios						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Robust Design: Steps in Robust Design, Fundamental Principle, Tools Used in Robust Design,
	Application, and Benefits of Robust Design
Text B	ooks:
1.	Jack Collins, Henry R. Busby, and George H. Staab, "Mechanical Design of Machine Elements
	and Machines: A Failure Prevention Perspective", John Wiley & Sons, Inc.
2.	Ansel C. Ugural and Saul K. Fenster, "Advanced Mechanics of Materials and Applied Elasticity",
	Prentice Hall, 5 th edition.
3.	N. K. Mehta and J. S. Rao, "Advanced Machine Design".
4.	L. S. Srinath, "Advanced Mechanics of Solids", McGraw Hill Education, 3 rd edition.
5.	Richard G. Budynas and Richard J. Schmidt, "Advanced Strength and Applied Stress Analysis",
	McGraw-Hill.
6.	Robert L. Norton, "Machine Design", Pearson.
Refere	ence Books:
1.	M. F. Spotts, "Mechanical Design Analysis", Prentice-Hall, Inc.
2.	Radzevich, S. P. (Ed.), "Dudley's Handbook of Practical Gear Design and Manufacture", 4 th ed.,
	CRC Press, 2021.
3.	A. M. Wahl, "Mechanical Springs", McGraw-Hill, 1963.
4.	Clyne, T. W., & Hull, D., "An Introduction to Composite Materials", 3 rd ed., Cambridge
	University Press, 2019.
5.	Efrén M. Benavides and David H. Myszka, "Advanced Engineering Design: An Integrated
	Approach", Woodhead Publishing, Cambridge, UK, Philadelphia, PA.
6.	Nam-Ho Kim, Bhavani V. Sankar, and Ashok V. Kumar, "Advanced Finite Element Analysis and
	Optimization: With MATLAB and ANSYS", John Wiley & Sons, 2018.
7.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley.
8.	Robert L. Norton, "Design of Machinery: An Introduction to the Synthesis and Analysis of
	Mechanisms and Machines", McGraw-Hill.
E-Res	ources:
1.	NPTEL Course on Fracture, Fatigue, and Failure of Materials by Prof. Indrani Sen, IIT
	Kharagpur https://onlinecourses.nptel.ac.in/noc22_mm42/preview
2.	NPTEL Course on Mechanical Behavior of Materials by Prof. Sankaran.S. IIT Madras By Prof.
	Sankaran.S, IIT Madras https://onlinecourses.nptel.ac.in/noc23_mm38/preview
3.	NPTEL Course on Basics of Materials Engineering by Prof. Ratna Kumar Annabattula, IIT
	Madras https://onlinecourses.nptel.ac.in/noc23_me78/preview

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)Semester: II										
Course	e: Program Electiv	ve – II (Fat	igue and F	Fracture Analysis) Code: MEDE204I					E204B	
	Teaching Schem	e (hrs/wee	K)		Evalu	ation Sc	cheme (N	(larks)		
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03 -		-	03	50	50	-	-	-	100	
Prereq	uisites:									
Introdu	ctory courses on	(a) Material	s Science a	and Engin	eering, (b)	Mechan	ical beha	vior of ma	terials	
Course	Course Objectives:									
1.	1. To Understand Fatigue Mechanics including the microscopic theories of fracture.									
2.	. To design and execute fatigue testing experiments using appropriate apparatus.									
3.	To explore the i	mpact of v	arious fact	tors such	as temper	ature, fro	equency,	and envir	ronmental	
	conditions on fat	igue behavi	or.							
4.	To apply principl	les of linear	elastic and	d elastic-p	lastic fract	ure mech	nanics to	analyze cr	ack	
	initiation and pro	pagation								
Course	e Outcomes: At the	he end of th	e course, tl	he studen	t will be ab	ole to -				
CO1	Understand the l	basics of fat	igue and fi	racture me	echanisms.					
CO2	Apply experime	ntal techniq	ues to dete	ermine fat	igue life.					
CO3	Analyze fatigue	failures in 1	eal-life ap	plications	•					
CO4	Apply linear ela	stic fracture	mechanic	s to predi	et brittle fr	acture.				
CO5	Apply the stress	intensity fa	ctor and Fi	racture to	ughness te	sting for	failure ai	nalysis.		
CO6	Understand Crack growth resistance curves and apply von Mises and Tresca yielding criteria									
000	for crack analys	is.								
Course	e Contents:									
Unit				Descr	iption					
	Fatigue Mecha	nics:								
	Introduction to I	Fatigue, Stre	ess Control	lled Fatig	ue, Microso	copic the	ories of f	Fracture: D	uctile and	
1.	cleavage fractur	e, ductile-b	rittle trans	ition, inte	er-granular	fracture	; Fatigue	e crack pro	pagation:	
	Fatigue crack growth theories, crack closure, Microscopic theories of fatigue crack growth;									
	Application of the	neories of fi	acture med	chanics in	design an	d materia	ls develo	opment		
	Fatigue Testing	:								
	Fatigue Test- fat	tigue testing	g apparatus	s, S-N Cu	rve for ferr	ous and	non-ferro	ous, fatigue	e fracture,	
2	methods of impr	oving fatig	ue life, cre	ep Test: c	creep curve	e, creep f	racture, I	Data acqui	sition and	
۷.	instrumentation,	classical m	ethods of	fatigue te	sting, AST	TM stand	ards - sp	ecimen pr	eparation,	
	procedure, Safe	life and fa	il-safe des	sign philo	sophies, I	mportanc	e of Fra	cture Mec	chanics in	
	aerospace struct	ure, Applica	ation to con	mposite n	naterials an	d structu	res.			
	Special Cases in	n Fatigue:								
	Fatigue in Mater	ials, Effect	of Tempera	ature on F	atigue, Fat	igue anal	ysis in th	e frequenc	y domain,	
5.	vibration fatigue	e, fatigue o	f welded	structure,	corrosion	fatigue,	high-ter	mperature	and low-	
	temperature fatig	gue, fatigue	analysis o	f wind tu	bines	-				

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Linear Elastic Fracture Mechanics:						
	Mechanisms of fracture, initiation of fracture and crack propagation, stress and energy criteria						
4	and fracture - effects of geometry, Inglis theory of stress, energy concept - Griffith theory of						
4.	fracture, Griffith Criteria-Modification, The stress analysis of crack tips, Macroscopic theories						
	in crack extension, Instability and R-curves, Crack tip plasticity, K as a failure criterion, Mixed						
	mode of fracture, Analytical and Experimental methods of determining K.						
	Stress Intensity factors and Fracture toughness:						
	Concept of Stress Intensity Factor, Fracture Toughness and Plane Stress-Plane Strain, Plastic						
5	Zone Size, Plane stress and plane strain fracture toughness, Plane Stress Fracture Toughness,						
5.	Plane Strain Fracture Toughness Testing, calculation for center crack, single edge crack, double						
	edge crack, round hole with crack, superposition of stress intensity factors, leak before break						
	(LBB) criterion						
	Elastic-Plastic Fracture Mechanics:						
	Crack tip opening displacement, J Integrals, Experimental determination of JIC, Crack growth						
6.	resistance curves, Crack tip constraint under large scale yielding, creep crack growth; crack tip						
	stress state, Irwin's stress intensity factors, Dugdale's approximation, crack opening						
	displacement, shape of the plastic zone – von Mises and Tresca yielding criteria.						
Text B	Books:						
1.	T. L. Anderson, "Fracture Mechanics: Fundamentals and Applications", CRC Press, 1994.						
2.	D. Brock, "Elementary Engineering Fracture Mechanics", Martinus Nijhoff Publishers, 1982.						
3.	S. T. Rolfe and J. M. Barson, "Fracture and Fatigue Control in Structures", PHI, 1977.						
4.	Yung-Li Lee, "Fatigue Testing and Analysis: Theory and Practice", Elsevier.						
5.	Japp Schijve, "Fatigue of Structures and Materials", Kluwer Academic.						
6.	Ali Fatemi, "Metal Fatigue in Engineering", Wiley-Interscience.						
7.	Prashant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education.						
Refere	ence Books:						
1.	Dieter Radaj, "Design & Analysis of Fatigue Resistant Welded Structures", Woodhead						
	Publishing.						
2.	Nestor Perez, "Fracture Mechanics", Kluwer Academic Publishers.						
3.	Gdoutos, E. E., "Fracture Mechanics: An Introduction", Springer.						
4.	Ashok Saxena, "Nonlinear Fracture Mechanics for Engineers", CRC Press.						
5.	Hertzberg, R. W., "Deformation and Fracture Mechanics of Engineering Materials", John Wiley						
	& Sons, Inc.						
E-Res	ources:						
1.	NPTEL course on Fracture, Fatigue and Failure of Materials By Prof. Indrani Sen, IIT						
	Kharagpur, https://archive.nptel.ac.in/courses/113/105/113105106/						

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	m: M. Tech. (Co	Se	Semester: II								
Course	e: Open Elective -	– II (IoT and	l Sensor D	Data Analysis) Code:					DS205		
	Teaching Schem	ne (hrs/wee	k)		Evalua	tion Sch	neme (M	arks)			
Lectu	ire Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
03	-	-	03	50	50	-	-	-	100		
Prereg	uisites:	I						1			
1. Basic understanding of computer networks and data communications.											
2.	Fundamental knowledge of data structures and algorithms.										
3.	Programming skills in Python or similar languages.										
4.	Basic knowledge of statistics and data analysis techniques.										
Course	e Objectives:										
1.	To understand th	e fundamen	tals of IoT	and sensor	technolog	jies.					
2.	To analyze and p	process sens	or data usi	ng various (echniques	•					
3.	To develop and i	mplement a	lgorithms t	for real-tim	e data anal	lysis.					
4.	To explore applie	cations of Io	oT data in v	various don	nains.						
5.	To design and ev	aluate sense	or-based sy	stems and	applicatior	ns.					
Course	e Outcomes: At t	he end of th	e course, t	he student v	will be able	e to -					
CO1	Understand the	architecture	and comp	onents of Ic	oT systems						
CO2	Acquire and pre-process sensor data effectively to implement techniques for data cleaning and										
CO2 normalization.											
CO3	Apply statistical	and machin	ne learning	techniques	to sensor	data.					
CO4	Integrate data fr	om multiple	e sensors to	enhance a	nalysis.						
CO5	Analyze the imp	pact of secur	rity practic	es on senso	r data anal	ysis.					
CO6	Explore real-wo	orld applicat	ions of IoT	and sensor	data anal	ysis.					
Course	e Contents:										
Unit				Descrip	otion						
	Overview of Io	T:									
1.	Definition, Evolution, and Architecture, Sensor Technologies: Types, Characteristics, and										
	Applications, IoT Communication Protocols: MQTT, CoAP, HTTP, etc.										
	IoT Device Mar	nagement ar	d Integrati	on.							
	Sensor Data Ac	equisition:	1.0		·						
2.	Sampling, Data	Formats, an	d Storage,	Data Prepro	cessing To	echnique	es: Clean	ng, Norn	ialization,		
	and Transforma	tion, Handli	ng Missing	g and Noisy	^y Data.						
	Data Storage So	olutions for	loT: Cloud	and Edge	Storage.						
2	Statistical Anal	lysis of Sen	sor Data:	A 1-1	·	1	Classifi				
5.	Descriptive and	Time Series	Statistics, r	viacnine Le	arning Tec	Time D	Classifi	cation, R	agression,		
	A duon cod A	I IIIIe-Series	Analysis a	ind Forecas	ung, Keal-	· 1 ine Da	na Proce	ssing and	Anarysis.		
4.	Auvanced Ana	A nomale D	inques:	oto Enciar	Mathada	Sanacat	Jusion N	[11]1: N/~ -	lal Data		
	Deep Learning, Anomaly Detection, Data Fusion Methods: Sensor Fusion, Multi-Modal Data										

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

	Integration, Case Studies: Smart Cities, Industrial IoT, Tools and Frameworks for Advanced					
	Analytics.					
	Security Challenges in IoT:					
5.	Threats and Vulnerabilities, Cryptographic Techniques and Protocols for IoT Security, Privacy					
	Concerns and Data Protection Regulations, Security Best Practices for Sensor Data Management.					
	Applications in Various Domains:					
6.	Healthcare, Agriculture, Smart Homes, etc., Case Studies: Real-World Implementations and					
	Solutions, Project Development: Designing, Implementing, and Evaluating IoT Solutions, Future					
	Trends and Innovations in IoT and Sensor Data Analysis.					
Text B	Books:					
1.	Buyya Rajkumar, Satish Narayana Srirama, "Internet of Things: Principles and Paradigms,"					
	Morgan Kaufmann.					
2.	Hoang D. M. T., S. B. S. Lee, "Data Science for IoT Engineers," Wiley.					
Refere	ence Books:					
1.	De Silva Clarence W., "Sensors and Actuators: Engineering System Instrumentation," CRC Press.					
2.	Liu H., and M. R. Lyu, "Data Mining for the Internet of Things: Techniques and Applications,"					
	Springer.					

3. Bahga Arshdeep and Vijay Madisetti, "Internet of Things: A Hands-On Approach," VPT.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Electrical – Power Systems) Semester: II										
5205										
Total										
100										
Power Electronics, Control Systems.										
Course Objectives:										
1. To distinguish between different configuration of electric vehicles with merits and demerits.										
2. To recommend drive for EV applications with suitable energy storage technology.										
ising on										
efficiency and energy storage.										
ve), and										
charging infrastructures, including domestic, public, and fast-charging stations.										
nods for										
control										
History and development of on-road Electric Vehicles (EV). Different configurations of hybrid										
EVs with block diagram representation, merits & demerits of different configurations in view of										
Basics of EV batteries:										
Specifications of batteries, power density, Energy density, Charging & Discharging cycle and										
pology										
arging)										
circuit.										
hargers.										
ductive										
harging										
harging										
ts. sinį ve), nods cor f hy viev cle opol arg duc harį harį										

CEPA SAME

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	EV Propulsion- Electric Motor:					
	Choice of electric propulsion system, block diagram of EV propulsion system, concept of EV					
4	Motors, single motor and multi-motor configurations, fixed & variable geared transmission, In					
	wheel motor configuration, classification of EV motors, Electric motors used in current vehicle					
	applications, Recent EV Motors, Comparison of Electric Motors for EV applications.					
	Power Electronics & Control requirement for EV:					
	Comparison of EV power devices, introduction to power electronics converter, four quadrant DC					
5	chopper, three-phase full bridge voltage-fed inverter, soft-switching EV converters, comparison					
	of hard-switching and soft-switching converter, three-phase voltage-fed resonance dc link					
	inverter, Basics of Microcontroller & Control Strategies.					
	EV Motor Drives:					
	DC Motor: Type of wound-field DC Motor, Torque speed characteristics DC-DC Converter, Two					
	quadrant DC Chopper, two quadrant zero voltage transition converter-fed dc motor drive, speed					
6	control of DC Motor Induction Motor Drive: Three Phase Inverter Based Induction Motor Drive,					
	Equal Area PWM, Three Phase Auxiliary resonant snubber (ARS) Inverter Type (ZVC & ZCS),					
	Single Phase ARS Inverter Topology, Speed Control of Induction Motor, FOC, Adaptive Control,					
	Model Reference Adaptive Control (MARS), Sliding mode Control.					
Text B	ooks:					
1.]	Dr. S. Sujatha, Senthil Kumar, 'A textbook on Electric vehicle technology'Scientific International					
]]	Publishing House.					
2. 5	Stefano Longo Mehrdad Ehsani, Yimin Gao, 'Modern electric, Hybrid electric & fuel cell vehicles,					
	Taylor & Fransis Exclusive					
Refere	nce Books:					
1.	Amelie Ewert, Stephan Schmid, et al., 'Small Electric vehicles : An international view on light					
	three and four wheeler, Springer publications					
2.	Ron Hodkinson & John Fenton, Light Weight Electric/Hybrid Vehicle design, Butterworth					
	Publications, Heinemann.					
3.	Marcedle Kkeirn, H.A.Kiehne, 'Battery Technology Handbook', Sandeep Dhameja, Electric					
	vehicle battery systems, Butterworth–Heinemann					
E-Reso	urces:					
1.	NPTEL :: Electrical Engineering - NOC: Electric vehicles and Renewable energy					

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (E&TC – IoT and Sensor Systems)Sensor Systems)									Semester: II		
Course	e: Open Ele	ctive	– II (Embec	Ided Syste	m)		Code	Code: ETIS205			
	Teaching S	chem	e (hrs/wee	k)	Evaluation Scheme (Marks)						
Lectu	ire Pract	ical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	-		-	03	50	50	-	-	-	100	
Prerequisites:											
Microc	controllers										
Course	Course Objectives:										
Introdu	ice students	to the	principles	and progra	amming of 1	eal-time o	operating	systems,	emphasiz	ing task	
manage	ement, sched	luling	, and data p	rotection i	n embedded	application	ons.				
Course	e Outcomes	: At t	he end of th	e course, t	he student v	vill be able	e to -				
CO1	Describe the fundamental concepts, characteristics, and components of embedded systems, including the design issues, flow, and metrics.										
CO2	Demonstra linking, loc	te pro cating	oficiency in and integr	the embe ating softw	dded softwa vare into tar	are develo get system	pment pi 1s.	rocess and	l tools, in	cluding	
CO3	Analyze the interrupt ha	e AR andlir	M architectung mechanis	ure, includi sms.	ing its desig	n philosop	hy, regis	ter bankin	g, pipelin	ing, and	
CO4	Utilize Er microcontr	nbede oller,	ded C pro including I	ogramming LEDs, LCI	g to interf Ds, keyboard	ace with ds, and AD	periphe DCs.	erals on	the LPC	C 2148	
0.05	Develop practical applications and projects using Embedded C and the LPC 2148										
COS	microcontroller, demonstrating hands-on proficiency.										
CO6	Apply the management	conc nt, an	epts of rea d the use of	l-time ope semaphor	erating syst	ems, inclu t shared da	iding tas ata, in en	k schedu nbedded a	ling, shar pplicatior	red data ns.	
Course	e Contents:										
Unit					Descrip	tion					
	Introducti	ion to	Embedded	l Systems:	:						
1.	Embedded System Definition and Characteristics: Definition, characteristics, and components of an embedded system. Design Issues and Flow: Embedded system design issues, design flow, and metrics. Hardware-Software Design: Issues in hardware-software design and co-design. Introduction to IDE.										
	Embedded	l Soft	ware Deve	lopment:							
2.	Developme and tools.L embedded	ent Pr Linkin softw	ocess and find and Loca are into the	Fools: Intro ting Softwa target syst	oduction to are: Technic tem.	the embed ques for lin	dded soft nking and	ware development	elopment software,	process getting	
	ARM Arc	hitect	ture and Ei	nbedded]	Processor:						
3.	ARM Arch SPSR. Pipe architecture	nitectu elinin e.	re Details: g and Interr	RISC arch upts: Pipel	itecture des ining, excep	ign philos ptions, inte	ophy, reg errupts, a	gister bank nd the vec	ting, CPS tor table i	R, and in ARM	

	LPC 2148 Microcontroller:							
1	Microcontroller Architecture: ARM7TDMI-S microcontroller LPC-2148 architecture details,							
ч.	SFRs, and port structure. Peripheral Modules: Timer, counter, PWM module, and Embedded C							
	programming for interfacing LEDs and LCDs.							
	Embedded C Programming:							
5.	Advanced Interfacing: Embedded C programming for interfacing with keyboards and							
	ADC.Practical Applications: Hands-on projects and real-world applications using LPC 2148.							
	Real Time Operating System (RTOS):							
	RTOS Concepts and Architectures: Introduction to RTOS concepts and embedded software							
6	architectures: round robin, round robin with interrupts, function queue scheduling, and real-time							
0.	operating systems.RTOS Programming and Task Management: Tasks and task states, task							
	scheduling, shared data and reentrancy, semaphores, and protecting shared data using							
	semaphores.							
Text B	Books:							
1.	James K. Peckol. "Embedded Systems: A Contemporary Design Tool", John Wiley & Sons.							
2.	Raj Kamal. "Embedded Systems: Architecture, Programming and Design", McGraw-Hill							
	Education.							
Refere	ence Books:							
1.	Joseph Yiu. "The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors", Newnes.							
2.	Michael Barr and Anthony Massa. "Programming Embedded Systems: With C and GNU							
	Development Tools", O'Reilly Media.							
3.	Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer.							

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Progra	Program: M. Tech. (Robotics and Automation Engineering) Semester: II									
Course	e: Open Elective -	- II (Micro I	Electro Me	chanical S	Systems)	Code: MERA205				
	Teaching Schem	e (hrs./wee	k)		Evalu	ation Sc	heme (N	Aarks)		
Lectu	re Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
03	-	-	03	50	50	-	-	-	100	
Prerequisites:										
Fundar	Fundamental of electrical and electronics engineering; Mechatronics; Manufacturing machine tools.									
Course	Course Objectives:									
To exp	olore micro engi	neering de	vices, elec	ctrostatic	sensor pri	nciples,	piezoele	ectric mate	rials and	
transdu	cers, micromachi	ning terms,	and polym	ners in ME	EMS.					
Course	e Outcomes: At th	he end of th	e course, t	he student	will be ab	le to -				
CO1	Understand the	operation of	micro dev	vices, mici	o systems	and their	application	tions.		
cor	Apply scaling laws that are used extensively in the conceptual design of micro devices							vices and		
02	systems.									
CO3	 Choose a micromachining technique, such as bulk micromachining and surface micromach for a specific MEMS fabrication process. Simplify the design of micro devices, micro systems using the MEMS fabrication process. 					nachining				
COS	for a specific MEMS fabrication process.									
CO4	Simplify the design of micro devices, micro systems using the MEMS fabrication process.								ess.	
CO5	Select suitable p	olymer for	given appl	ication.						
Course	e Contents:									
Unit				Descr	iption					
	Introduction:									
	Intrinsic Charac	cteristics of	MEMS, E	Energy Do	mains and	Transdu	cers, Ser	nsors and A	Actuators,	
1.	Introduction to Microfabrication, Silicon-Based MEMS Processes, New Materials, Review of									
	Electrical and Mechanical Concepts in MEMS, Semiconductor Devices, Stress and Strain									
	Analysis, Flexur	al Beam Be	ending, Tor	rsional De	flection.					
	Electrostatic Sensing and Actuation:									
	Introduction to Electrostatic Sensors and Actuators, Parallel-Plate Capacitors, Applications of									
	Parallel Plate Capacitors, Interdigitated Finger Capacitors, Applications of Comb Drive Devices.									
	Thermal Sensing and Actuation: Introduction, Sensors and Actuators Based on Thermal									
2.	Expansion, Thermal Couples, Thermal Resistors, Applications. Magnetic Actuation: Essential									
	Concepts and Pr	rinciples, Fa	brication	of Micro I	Magnetic (Compone	ents, Cas	e Studies o	of MEMS	
	Magnetic Actua	tors. Piezo	Resistive S	Sensors: P	iezo resist	ive Sense	or Mater	ials, Stress	Analysis	
	of Mechanical I	Elements, A	pplication	s of Piez	o Resistive	e Sensors	s. Piezoe	electric Sei	nsing and	
	Actuation: Intro	duction, Pro	operties of	Piezoelec	tric Materi	als, Appl	ications.			
	Sensors and Ac	tuators:								
	Piezo-Resistive	Sensors, F	iezo-Resis	stive Sens	sor Materi	als, Stre	ss Anal	ysis of M	echanical	
3.	Elements, Appli	cations to Ir	nertia, Pres	sure, Tact	ile, and Flo	ow Senso	ors, Piezo	electric Se	nsors and	
	Actuators, Pieze	oelectric E	ffects, Pie	zoelectric	Materials	, Applic	ations to	o Inertia,	Acoustic,	
	Tactile, and Flow	w Sensors.								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Micromachining:								
	Silicon Anisotropic Etching, Anisotropic Wet Etching, Dry Etching of Silicon, Plasma Etching,								
4.	Deep Reactive Ion Etching (DRIE), Isotropic Wet Etching, Gas Phase Etchants, Case Studies,								
	Basic Surface Micro-Machining Processes, Structural and Sacrificial Materials, Acceleration of								
	Sacrificial Etch, Stiction and Anti-Stiction Methods, LIGA Process, Assembly of 3D MEMS.								
	Polymer and Optical MEMS:								
5	Polyimide, SU-8, Liquid Crystal Polymer (LCP), PDMS, PMMA, Parylene, Fluorocarbon,								
5.	Application to Acceleration, Pressure, Flow, and Tactile Sensors, Optical MEMS, Lenses and								
	Mirrors, Actuators for Active Optical MEMS								
Text E	Books:								
1.	Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2012.								
2.	Stephen D. Senturia, "Microsystem Design", Springer Publication, 2000.								
3.	Dr. T. Kamatchi, "Fundamentals of Micro-electromechanical Systems (MEMS)", Technical								
	Publication.								
4.	Nadim Maluf, Kirt Williams, "An Introduction to Micro-electromechanical Systems								
	Engineering", Artech House, Boston.								
Refere	ence Books:								
1.7	Tai Ran Hsu, "MEMS & Microsystems Design and Manufacture", TMH, New Delhi, 2002.								
2.1	Marc Madou, "Fundamentals of Microfabrication".								
E-Res	ources:								
1.	https://nptel.ac.in/courses/108106165								
2.	https://www.me.iitb.ac.in/~gandhi/me645/05L1_coursecontents_mtvn.pdf								
3.	https://www.edx.org/learn/engineering/ecole-polytechnique-federale-de-lausanne-micro-and-								
	nanofabrication-mems								
4.	https://engineering.purdue.edu/online/courses/fundamentals-mems								

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)								Semester: II		
Course:	Program Electi		Code: MEDE206							
ſ	eaching Sche	me (hrs/wee	k)	Evaluation Scheme (Marks) CIE ETE TW OR PR TW						
Lecture	Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
-	02	-	01	-	_	25	25	-	50	
Prerequi	sites:									
1. E	ective-I:-Basic	c knowledge	of Enginee	ring Mech	nanics, Ma	terials Sc	ience, M	lechanica	ıl Design	
Fu	indamentals ar	nd Failure Mo	ode Effects	Analysis	(FMEA).					
2. E	ective-II: - B	asic knowled	dge of Eng	gineering	Solid Me	chanics,	Mechani	cal Prop	erties of	
Μ	aterials and Ex	xperimental T	Techniques	Finite Ele	ment Anal	ysis (FEA	A).			
Course (bjectives:									
Elective	l: Advanced I	Machine Des	ign							
1. T	o analyze Failu	ire Modes								
2. T	o evaluate Surf	face Integrity								
3. T	o optimize Des	sign Processe	S							
Elective	2- Fatigue and	l Fracture A	nalysis							
1. T	o apply Fatigue	e Analysis Te	chniques							
2. T	o conduct Stres	ss/Strain Ana	lysis							
3. T	o implement E	xperimental 7	Fechniques							
Course (outcomes: At	the end of the	course, the	e student v	vill be able	e to -				
CO1 5	Solve open-end	led Design pi	oblem and	report the	solution.					
CO2	Simulate the pr	oblem and co	orrelate it w	ith theore	tical conce	epts.				
CO3 1	Jnderstand the	impact of as	sumptions of	on the sim	ulated resu	ılts.				
CO4 (Collect data, ar	nalyze, interp	ret, and rep	ort the res	ults.					
List of E	xperiments:									
		Elect	tive 1- Adv	anced Ma	achine De	sign				
1. C	ase Studies bas	sed on: Failur	e Mode Eff	ect Analy	sis.					
2. C	ase Studies bas	sed on: Surfac	ce Failure.							
3. C	ase Studies bas	sed on: Proce	ss Optimiza	ation.						
4. C	ase Studies bas	sed on: Desig	n based on	Quality an	nd Reliabil	ity.				
5. C	ase Studies bas	sed on: Desig	n based on	Cost.						
		Electiv	ve 2- Fatigu	e and Fra	acture An	alysis				
1. C	ase Studies bas	sed on: Rain l	Flow Count	ing Techr	ique.					
2. St	ress / Strain B	ased Fatigue	Analysis.							
3. FI	EA Simulation	of Fatigue /]	Fracture Pro	oblem.						
4. C	ack tip stresse	es using Photo	elasticity.							
5. St	ress Analysis	Using Image	Processing.							
E-Resou	ces:									
Elective	I- Advanced N	Machine Des	ign:							
1. N	PTEL course of	on Failure ana	lysis and P	revention	by Prof. D	K Dwive	edi, IIT F	Roorkee		

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

https://onlinecourses.nptel.ac.in/noc20_me26/preview

- 2. NPTEL course on Fracture, Fatigue and Failure of Materials by Prof. Indrani Sen, IIT Kharagpur https://onlinecourses.nptel.ac.in/noc22_mm42/preview
- 3. NPTEL course on Reliability-Based Structural Design by Prof. Arunasis Chakarborty, IIT Guwahati https://onlinecourses.nptel.ac.in/noc24_ce91/preview

Elective 2- Fatigue and Fracture Analysis:

- 1. NPTEL course on Engineering Fracture Mechanics by Prof. K. Ramesh, IIT Madras https://onlinecourses.nptel.ac.in/noc24_me113/preview
- 2. NPTEL course on Experimental Stress Analysis by Prof. K. Ramesh, IIT Madras https://onlinecourses.nptel.ac.in/noc22_me67/preview

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)							Sem	Semester: II		
Course: Design Engineering Lab – II						Code	Code: MEDE207			
Teaching Scheme (hrs/week)					Evaluation Scheme (Marks)					
Lect	ure Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
_	02	-	01	-	-	25	25	-	50	
Preree	quisites:		1	1		1	1			
1.	1. Basic knowledge of Solid Mechanics.									
2. Basic knowledge of Kinematics.										
Cours	e Objectives:									
1.	To apply design	engineering	principles	and meth	odologies	to develop	p innovati	ve solutio	ons.	
2.	To conduct expe	riments and	tests to ev	aluate the	performar	nce of desi	igned syst	ems/com	ponents.	
3.	To use computat	ional tools a	and softwar	re for desi	gn analysi	s and opti	mization.			
Cours	e Outcomes: At t	he end of th	e course, t	he studen	t will be ab	ole to -				
CO1	Analyze and int	erpret the re	sults to de	termine th	ne relations	ship betwe	en strain	and stress	5.	
CO1	Apply the principles of polariscope to analyze and solve problems in engineering and scientific									
002	applications, such as stress analysis, material characterization, and optical filtering.									
CO3	Apply the principles of statics and mechanics of materials to analyze the stress and deflection of									
003	beams under various loading conditions.									
CO4	Analyze and explain the motion of the Klann mechanism, including the displacement, velocity,									
	and acceleration of its links.									
CO5	Analyze and interpret the position curves and workspace of a 4-bar RRRR Grashofian Crank									
	Rocker Mechanism using graphical and analytical methods.									
C06	Understand the fundamental concepts of digital image processing, including image									
000	representation, storage, and manipulation.									
List of	f Experiments:									
Perform any five experiments:										
1.	Strain gauge Wheatstone bridge circuit.									
2.	To measure the strain in a loaded steel cantilever using strain gauges.									
3.	Study of Polaris cope and its components.									
4.	Stress Analysis of Pure Beam Bending.									
5.	Perform the experiment on the klann mechanism and understand the simple one-degree freedom									
	walking mechanism and find out the applications of coupled four-bar mechanisms.									
6.	Complete the experiment on Chebyshev's straight line mechanism and find out the position of the									
	links using angles, thereby understanding the application of four-bar mechanisms in the walking									
	mechanism.									

- 7. To Study the Position Analysis of a 4 Bar RRRR Grashofian Crank Rocker Mechanism Position Analysis of a 4 Bar RRRR Grashofian Crank Rocker Mechanism.
- 8. Digital image processing techniques (DIP).

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

DEPARTMENT OF MECHANICAL ENGINEERING

Reference Books:

- 1. Richard L. Hannah and Samuel E. Reed, "Strain Gage Users' Handbook", Chapman and Hall, New edition.
- 2. Ansel C. Ugural and Saul K. Fenster, "Advanced Mechanics of Materials and Applied Elasticity", Prentice Hall; 5th edition.
- 3. N. K. Mehta, "Machine Tools Design", Tata McGraw-Hill.
- 4. Pericles S. Theocaris and Emmanuel E. Gdoutos, "Matrix Theory of Photoelasticity", Springer Series in Optical Sciences (SSOS, volume 11).
- 5. Richard G. Budynas, "Advanced Strength and Applied Stress Analysis", McGraw-Hill Education; 2nd edition.
- **6.** Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson Education; Fourth edition.

E-Resources:

- 1. NPTEL course on Experimental Stress Analysis by Prof. K. Ramesh, IIT Madras https://archive.nptel.ac.in/courses/112/106/112106068/
- 2. NPTEL course on Mechanics of Solids by Prof. Priyanka Ghosh, IIT Kanpur https://archive.nptel.ac.in/courses/105/104/105104160/#

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical–Design Engineering)							Se	Semester: II			
Course:	Dissertation Ph	ase – I							Code: MEDE208		
Т	Evaluation Scheme (Marks)										
Lecture	e Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total		
	02	-	01	-	-	25	25	-	50		
Prerequi	isites:										
Basic knowledge of Machine Design, Mechanical system design, Basics of Analysis software.											
Course (Objectives:										
1. T	o conduct revie	w of literati	are to arriv	e at select	ed advan	ced topic	for the re	esearch wo	rk.		
2. T	o enable studen	its to apply	their know	ledge abo	ut resear	ch design a	and meth	nods to dev	elop their		
p	roject.										
3. T	o inculcate rese	earch culture	e in studen	ts for their	r technica	al growth.					
Course of	outcome: At the	e end of the	course, the	e student	will be at	ole to -					
CO1	Identify a topi	ic in advanc	ed areas of	f design e	ngineerin	g					
CO2	Review literature to identify gaps and define the objectives and scope of the work										
CO3	Employ the ideas from the literature and develop a research methodology										
CO4	Prepare good-quality technical reports based on the project										
CO5	Prepare a good-quality research paper										
Course (Contents:										
Sr. No.	Description										
1.	Selection of Topic										
2.	Literature Survey										
3.	Defining the Objectives and Solution Methodology										
4.	Performance of the Task										
	> Under the guidance of a faculty called as Supervisor, PG students from first year is										
	required to do innovative and research-oriented work related to various theory and										
	laboratory courses he/she studied during previous semesters. Dissertation work should										
	not be limited to analytical formulation, experimentation or survey based project.										
	> Student need to carry out an exhaustive literature survey with consultation of his/her										
5.	Supervisor for not less than 25 reputed national international journals and conference										
	papers. Students should make the Presentation with literature survey report to justify										
	about the innovativeness, applicability relevance and significance of the work.										
	➢ At the time of presentation, student shall also prepare Synopsis of the work and submit										
	to department for approval.										
	> Student shall submit dissertation as per the prescribed format to department.										

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

Program: M. Tech. (Mechanical - Design Engineering)						Sei	Semester: II			
Cours	e: Audit Course	ia	Code: MEDE209				DE209			
	Teaching Sch	Evaluation Scheme (Marks)								
Lectu	ire Practical	Tutorial	Credit	CIE	ETE	TW	OR	PR	Total	
01	-	-	-	-	-	-	-	-	-	
Prere	quisites:									
1.	1. Understanding of Indian History and Political Science									
2.	Familiarity with Constitutional Law and Governance									
3.	Awareness of Socio-economic and Cultural Diversity in India									
4.	Knowledge of	Democratic Pr	ocesses and	d Institutio	ons					
Cours	e Objectives:									
1.	Examine the H	istorical Devel	opment of	the Indian	Constitut	ion				
2.	Critically Anal	yze the Philos	ophical Fou	indations	of the Indi	an Constitu	ution			
3.	. Explore the Scope and Implications of Constitutional Rights and Duties									
4.	. Understand the Structure and Functions of Key Organs of Governance									
5.	Analyze the M	echanisms and	Practices (of Local A	aministrat	10 n				
0.	Evaluate the R	ole and Function	oning of El	ectoral Ins	stitutions	a to				
	Course Outcomes: At the end of the course, the student will be able to -									
$\frac{001}{002}$	Evaluate the Philosophical Foundations of the Indian Constitution									
C02	Evaluate the Finlosophical Foundations of the Indian Constitution Explain the Scope and Significance of Constitutional Pights and Duties									
C03	Describe the Structure and Functions of Key Organs of Governance									
C04	Evaluate the Functioning of Local Administration and Grassroot Democracy									
CO6	Analyze the Role and Functioning of Electoral Institutions									
Course Contents:										
Unit Description										
1.	History of Making of the Indian Constitution:									
	History, Drafting Committee (Composition & Working)									
	Philosophy of the Indian Constitution:									
2.	2. Preamble, Salient Features									
	Contours of Constitutional Rights & Duties:									
3.	Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to									
	Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive									
	Principles of State Policy, Fundamental Duties.									
	Organs of Governance:									
4.	Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive,									
	President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges,									
	Qualifications,	Powers and Fu	unctions.							

(An Autonomous Institute Affiliated to Savitribai Phule Pune University) NAAC Accredited with A+ Grade / ISO 21001:2018

	Local Administration:								
5.	District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role								
	of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI:								
	ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role, Block level:								
	Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed								
	officials, Importance of grass root democracy								
	Election Commission:								
6.	Election Commission: Role and Functioning, Chief Election Commissioner and Election								
	Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the								
	welfare of SC/ST/OBC and women								
Refer	Reference Books:								
1.	"The Constitution of India, 1950 (Bare Act)", Government Publication.								
2.	Dr. S. N. Busi, "Dr. B. R. Ambedkar Framing of Indian Constitution", 1st Edition, 2015.								
3.	M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.								
4.	D. D. Basu, "Introduction to the Constitution of India", Lexis Nexis.								
E-Res	ources:								
1.	Constitution of India - National Portal of India https://www.constitutionofindia.net/read/								
	https://legislative.gov.in/constitution-of-india/								
2.	PRS Legislative Research - Articles on Indian Constitution https://prsindia.org/								
3.	Election Commission of India - Official Website								